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Abstract

Trees dispersed in grazing areas are contribute to the sustainability of livestock systems. The

interactions between trees and soil are ecological processes that allow the modification of the

biology, fertility, and physics of the soil. This study was aimed to assess the influence of dis-

persed trees in pastures on soil properties in grazing areas for dual-purpose cattle systems in

the Piedmont region of the Colombian Amazon. The work was done in grazing areas with scat-

tered trees at the Centro de Investigaciones Amazónicas CIMAZ–Macagual in Florencia—

Caquetá—Colombia. We evaluated the effect of five tree species, Andira inermis, Bellucia pen-

támera, Guarea Guidonia, Psidium guajava and Zygia longifolia, on soil properties (up to 30

cm soil depth) under and outside the influence of the crown. Under the tree crown, three points

were systematically taken in different cardinal positions. This was done at a distance corre-

sponding to half the radius of the tree crown. The sampling points in the open pasture area (out

of crown) were made in the same way, but at 15 m from the crown border. The ANOVA

showed significant interaction (P < 0.0001) between tree species and location for macrofauna

abundance up to 30 cm soil depth. For this reason, we performed the comparison between

locations for each tree species. Chemical soil variables up to 10 cm soil depth only showed

interaction of tree species-location for exchangeable potassium (P = 0.0004). Soil physical soil

characteristics up to 30 cm soil depth only showed interaction of tree species-location at 20 cm

soil depth (P = 0.0003). The principal component analysis for soil properties explained 61.1%

of the total variability of the data with the two first axes. Using Monte Carlo test, we found

crown effect for all species. Trees help to control exchangeable mineral elements that can

affect the soil, potentiate basic cations such as magnesium and potassium, increase the abun-

dance of soil macrofauna; but some trees with high ground level of shade in grazing areas

could increase soil compaction due to the greater concentration of cattle in these areas.
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Introduction

The department of Caquetá is located in the northwest of the Amazon region. It has an area of

89,530 km2 that corresponds to 7.8% of the country’s continental surface; it is part of the so-

called Western Amazon subregion of Colombia [1]. In this region, livestock activity occurs in

all types of farm landscapes, whose sizes vary from 30 ha to more than 500 ha, with an average

of 120 bovines per farm [2]. Historically, there were changes in land use cover that started

from the forest to agricultural production systems (annual crops, palm, and pastures) which

were sponsored by state policies. This process has been called by some authors as the empow-

erment of the Amazon, causing the loss of ecosystem services, as well as reduced livestock sys-

tems efficiency [3].

In this context, deforestation and the conversion of Amazonian forests into pastures and

croplands can have negative effects on the soil due to an excessive stocking, turning grazing

areas into degraded pastures [4]. This practice has increased compaction, erosion, nutrient

depletion, and general loss of soil fertility and biodiversity [5–8]. The soil macrofauna in par-

ticular has proven to be a sensitive indicator of the alteration of the vegetation cover [8–12],

and it can considerably affect the decomposition and cycling processes of soil nutrients [13–

15].

The conservation of the tree component in grazing areas allows transforming traditional

livestock systems into more sustainable productive systems [3]. In addition, it is important to

know the effect of scattered trees in pastures on soil properties [16, 17], ecosystem services [18]

and animal production [19, 20]. The presence of trees in pastures have several agroecological

advantages [21]. These include a higher content of soil nutrients, although well below that of

the amount stored in the natural forest [22] and the growth of tree seedlings and crop species

under its crown [23]. Likewise, the distribution and nature of plants in an agroforestry system

greatly influence soil biology [24–26]. The particular trophic and microclimatic conditions in

the vicinity of the trees can affect the abundance and richness of soil macrofauna [27].

Scattered trees in paddocks contribute to improve soil fertility [28], but the level of

improvement depends on the tree species and functional traits such as leaf type and size,

crown size, and architecture, among others [29], their arrangement and spatial distribution,

and the management given to the scattered trees [30, 31]. Knowing the impact of scattered

trees in pastures on soil characteristics (biological, chemical, and physical) will contribute to

better pasture management decisions including animal stocking rate applied. This is, because

pasture and tree biomass production depends on changes in soil fertility [32]. The objective of

this work was to determine the effect of the most common tree species scattered in pastures on

the biological, chemical, and physical properties of the soils in grazing areas of managed dual-

purpose cattle systems in the Piedmont region of the Colombian Amazon. We expect to find a

significant effect of tree canopy on soil variables, with the effect of some tree species on biologi-

cal, chemical, and physical variables being more significant. We tested the two specific hypoth-

esis: i) tree canopy has a significant effect on soil variables, and ii) tree species common of

cattle farms in the Colombian Amazon region influence soil properties.

Materials and methods

Study area

The study was carried out at the Centro de Investigaciones Amazónicas CIMAZ–Macagual

"Cesar Augusto Estrada González", located 22 km from Florencia, a city in the south of the

Caquetá department—Colombia, with about 380 ha for livestock production. It is geographi-

cally located in the Colombian Amazon at 1˚ 37 ’N and 75˚ 36’ W, at 300 m above sea level,
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and Afm type (Warm-Humid Tropical Forest) in the climatic classification according to Köp-

pen [33]. The area presents average annual precipitation of 3,793 mm, a solar brightness of

1,707 h year-1, an average temperature of 25.5˚C and relative humidity of 84.25%. It is located

within the life zone of the Tropical Humid Forest (Bh-T) defined by Holdridge [34].

Tree selection and sampling points

Five tree species Andira inermis, Bellucia pentámera, Guarea Guidonia, Psidium guajava and

Zygia longifolia were selected to evaluate the influence of scattered trees on the soil properties

in grazing areas of the managed pastures. These species were selected because they were the

ones that presented the highest value index of ecosystem importance in a census of 4,657 trees

in the cattle farms in the Colombian Amazon region [35]. Except for Guarea guidonia, they

were the most named by the cattle producers of the region in a study on local knowledge and

provision of ecosystem services [35]. Two individuals of each tree species that did not have

overlapping crowns and shade areas to ensure the independence of the observations were ran-

domly selected within the paddocks as replications. Individuals within a tree species were simi-

lar in architecture, shape, height, and crown size. In each individual tree, three sampling

points were taken in the North, East and West position in the middle of the radius of the

crown (distance below the crown). The sampling points in the open pasture area (outside of

crown) were carried out in a North, East, and West position, 15 m from the edge of the crown

of each individual tree (distance out of crown) selected for soil sampling.

Evaluation of soil biological, chemical, and physical characteristics

We evaluated biological, chemical, and physical characteristics of soils sampled under and out-

side tree effect in all sampling points. For the characterization of the soil macrofauna, we used

the ISO 23611–5 standard [36]. A soil monolith was taken (25 × 25 cm at a soil depth of 30

cm) and for the extraction of this monolith we used a metallic angle frame. For each tree and

distance to the crown of the tree (below or outside), all the fauna of the soil in the young and

adult stage found in the litter, and in the 30 cm of soil was taken without differentiating by

depth, for a total of 60 data (5 species × 2 repetitions × 2 distances to the crown of the tree × 3

positions). The collected fauna samples were placed in plastic bottles with 97% alcohol, and

later a morphological description and a taxonomic classification were made at the order level

of the individuals found.

For chemical characterization of the soil, a composed sample of three cardinal positions at

0–10 cm depth was taken for each tree and distance to the crown of the tree (below or outside)

obtaining 180 observations (5 species × 2 repetitions × 2 distances to the crown of the tree × 3

positions × 3-fold soil lab determinations). The three lab determinations were averaged to

yield n = 60 data points. For each soil sample we determined: i. soil organic carbon (SOC) by

oxidation of dichromate [37] in an acid medium for 30 min in a digester block at a constant

temperature of 155˚C, and titration of the non-oxidized dichromate employing Mohr’s salt; ii.
Soil organic matter (SOM) was estimated by multiplying the SOC value with 1.7 [38]; iii.
exchangeable cations (Ca2+, Na+, Mg2 +, K+) and exchangeable aluminum (Al 3+) extracted by

successive washes with a 0.2 N BaCl solution in an extract-soil ratio of 1:5 following the

method of Mehlich [39] with the modification highlighted by Lax et al. [40]. The concentra-

tions of the exchangeable cations and Al were determined by Ion Chromatography (IC) in an

accredited laboratory; iv. estimation of aluminum saturation (AlS); v. available inorganic phos-

phorus (P) extracted by the Olsen method [41] using bicarbonate (0.5M NaHCO3) at pH 8.5,

in a solution-soil ratio of 1:20 [42]. The phosphorus resulting from the extracts, previously

neutralized with a dilute HCl solution, was determined calorimetrically by the ascorbic acid
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method according to Murphy and Riley [43]; vi. potentiometric hydrogen potential (pH); and

vii. cation exchange capacity (CEC).

For characterization of soil physical characteristics, we used a 50 × 50 × 50 cm test pit sam-

pling in the three positions (N, W, E) at 0–10, 10–20, and 20–30 cm depth for each tree and

distance to the crown of the tree (below or outside), obtaining 60 observations (5 species × 2

repetitions × 2 distances to the crown of the tree × 3 positions) for each of the three depths.

Using the volume cylinder method [44] (98.1 cm3) the percentage of moisture and the bulk

density of soil were determined. Likewise, the soil resistance to penetration was determined

using a hand penetrometer model 0601 (Eijkelkamp Agrisearch Equipment, Giesbeek, The

Netherlands).

Data were analyzed through an analysis of variance with linear mixed models (LMM) for

continuous variables and generalized linear mixed models (GLMM) with a Poisson distribu-

tion for the abundance and richness of macrofauna orders. The model considered the fixed

effects of the tree species, distance to the crown of the tree (below or outside), and the interac-

tion species by distance to the crown, and the random effects of tree [45] and position within

tree. To determine differences between treatment means, Fisher’s LSD test was used (p<0.05)

and in cases where there were interactions between species and distance factors, orthogonal

contrasts were used to determine differences between distance within each species. The analy-

sis was performed using the InfoStat program [46] and its interface to R [47].

Principal component analysis (PCA) was carried out to explore the relationship between

biological variables, and between chemical and physical variables and to determine multivari-

ate differences between tree species and association among variables. Significance was tested

using a Monte Carlo test (1,000 simulations). PCA allows to analyze the interdependence of

metric variables and to find an optimal graphical representation of the variability of the data in

a table of n observations and p columns or variables. This exploratory analysis tries to find,

with minimal loss of information, a new set of uncorrelated variables (principal components)

that explain the structure of variation in the rows of the data table. Additionally, co-inertia

analysis was used to explore covariation and general similarity in data structure between the

soil biological, chemical, and physical data sets. Multivariate analysis was performed in R.3.4.4

software [47], using the Ade4 package.

Results

Soil biological characteristics

The analysis of variance using a GLMM showed highly significant differences (P <0.0001) for

the abundance of macroinvertebrate orders between distance to the crown of the tree (below

or outside) (29.26 ± 2.22 and 22.66 ± 1.77 below and outside of crown, respectively, Fig 1).

However, the model showed significance in the interaction of tree species by distance

(P = 0.0004), for which the positions within each tree species were compared. Guarea guidonia
and Zygia longifolia presented higher abundance below the crown (40.14 ± 6.62 for Z. longifo-
lia and 23.04 ± 4.01 for G. guidonia) than outside the crown (25.38 ± 4.36 for Z. longifolia and

14.97 ± 2.76 for G. guidonia) (Fig 1). Andira inermis, Psidium guajava, and Bellucia pentamera
did not show differences between locations.

For the variable on richness of macroinvertebrate orders, there was no interaction between

tree species and distance (P = 0.5831), and there were no differences between the two distances

(P = 0.6557). But there were differences between tree species (P = 0.0378), where A. inermis
was the one with the highest richness (4.82 ± 0.63), followed by Z. longifolia (4.52 ± 0.62), B.

pentamera (4.14 ± 0.59), P. guajava (2.91 ± 0.49), and ending with G. Guidonia (2.74 ± 0.48)

(Table 1).
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Fig 1. Abundance of macroinvertebrates below and outside the crown of tree species in grazing areas of pastures in the Colombian Amazonian

piedmont. Equal letters within a species indicate equal means (P> 0.05).

https://doi.org/10.1371/journal.pone.0261612.g001

Table 1. Macroinvertebrate richness in scattered trees in grazing areas of pastures in the Colombian Amazonian

piedmont.

Tree species p-value

Mean S.E.

Andira inermis 4.82 0.63a 0.0378

Bellucia pentamera 4.14 0.59ab

Guarea guidonia 2.74 0.48b

Psidium guajava 2.91 0.49b

Zygia longifolia 4.52 0.62a

Equal letters between species indicate equal means (P > 0.05).

https://doi.org/10.1371/journal.pone.0261612.t001
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Soil chemical characteristics

For the chemical characteristics evaluated, the analysis under the LMM only showed signifi-

cant interaction (P = 0.0046) between tree species and distance for the K+ variable. Differences

were found between below and outside of crown (p = 0.0410), with the highest average content

of K+ under the crowns (0.71 ± 0.06 cmol kg-1) than outside these (0.54 ± 0.06 cmol kg-1). Psi-
dium guajava and Z. longifolia presented higher K+ content below the crown (1.09 ± 0.13 cmol

kg-1 and 0.80 ± 0.13 cmol kg-1 respectively) than outside of crown (0.59 ± 0.13 cmol kg-1 and

0.31 ± 0.13 cmol kg-1 respectively) (Fig 2). For B. pentamera and A. inermis, there were no dif-

ferences between distance. Guaea guidonia presented differences between distance, but here

the highest K+ content occurred at the outside of crown distance (0.81 ± 0.13 cmol kg-1) and

not under the crown distance (0.31 ± 0.13 cmol kg-1) (Fig 2).

The rest of the soil chemical variables evaluated did not present significant differences for

tree species by distance interaction and the distance effect. Thus, only results on differences

between tree species are presented. For soil pH, analysis showed differences (P = 0.0337)

between species with A. inermis and Z. logifolia presenting highest mean values (5.42 ± 0.14

and 5.14 ± 0.14, respectively) (Table 2). Differences for Al saturation (%) were found between

species (P = 0.0144) where B. pentamera presented the highest percentage with a mean of

71.80 ± 0.22 and Z. logifolia presented the lowest percentage with a mean of 21.72 ± 6.46

(Table 2). For exchangeable Al value differences between species (P = 0.0050), B. pentamera

Fig 2. K+ content in species-by-distance interaction (below and outside of crown) of scattered trees in grazing areas of pastures in the Colombian

Amazonian piedmont. Equal letters within species indicate equal means (P> 0.05, n = 18).

https://doi.org/10.1371/journal.pone.0261612.g002
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presented the highest content with 8.27 ± 0.78 cmol kg-1, and Z. logifolia presented the lowest

content with 0.90 ± 0.78 cmol kg-1 (Table 2).

The cation exchange capacity (CEC) showed differences between species (P = 0.0065), with

the highest mean for B. pentamera of 25.43 ± 1.29 cmol kg-1, and A. inermis with the lowest level

with 12.15 ± 1.29 cmol kg-1 (Table 2). Exchangeable sodium values presented differences between

species (P = 0.0056), where Z. longifolia showed the highest mean with 0.16 ± 0.01 cmol kg-1, and

P. guajava showed the lowest mean with 0.09 ± 0.01 cmol kg-1 (Table 2). Available P content pre-

sented significant differences (P = 0.0123), where A. inermis presented the highest mean with

52.17 ± 5.05 cmol kg-1, and P. guajava presented the lowest mean with 11.98 ± 5.05 cmol kg-1

(Table 2). Soil organic carbon (SOC), soil organic matter (SOM), calcium (Ca), and exchangeable

magnesium (Mg) did not show differences (P<0.05) between species or distance.

Soil physical characteristics

The analysis of variance of soil physical variables showed significance only for the interaction

distance by tree species for bulk density at 20 cm depth (P = 0.0003). At other soil depths, no

interaction or effect of distance or species was found. Psidium guajava presented higher soil

bulk density values outside of crown (1.19 ± 0.03 g cm-3) than below its crown (1.13 ± 0.03 g

cm-3). A. inermis presented a higher bulk density under its crown (1.05 ± 0.03 g cm-3) than

outside of it (0.95 ± 0.03 g cm-3). G. guidonia, B. pentamera and Z. longifolia did not show dif-

ferences in any of the two distances at 20 cm soil depth (Fig 3).

For the variable resistance of the soil to penetration at the three depths evaluated, the inter-

action between distance by tree species was found (P <0.0001). Greater resistance to the soil

penetration was detected under Z. longifolia (191.47 ± 16.67 kPa cm-2) than outside it at 10 cm

(96.25 ± 16.67 kPa cm-2), at 20 cm (195.83 ± 17.91 kPa cm-2 and 106.67 ± 17.91 kPa cm-2

respectively), and at 30 cm (197.50 ± 17.66 kPa cm-2 and 106.67 ± 17.66 kPa cm-2), respec-

tively. The species G. guidonia, A. inermis, P. guajava y B. pentamera did not show significant

differences in the two distances at all depths (Table 3).

The variable moisture at ground level at 20 cm depth showed significant (P = 0.0073) effects

between tree species and distance. Moreover, the species evaluated A. inermis presented a

lower percentage of moisture below its crown (0.35 ± 0.02) than outside of it (0.44 ± 0.02),

while P. guajaba, Z. longifolia, G. Guidonia, and B. pentámera did not show significant differ-

ences in any distance (Fig 4).

Relationships between edaphic properties and tree species

The PCA for the macrofauna groups explained 42.3% of the variability of the data with the

first two components. PC1 projected the incidence of the crown of each species on the

Table 2. Differences between tree species for the soil chemical variables (Mean±S.E.).

Tree Species CEC (cmol kg-1) Exchangeable sodium (cmol kg-1) Available Phosphorus (mg kg-1) pH Exchangeable

aluminum

(cmol kg-1)

Al saturation (%)

Andira inermis 12.15±1.29c 0.12±0.01b 52.17±5.05a 5.42±0.14 a 0.95±0.87c 30.7±7.14cd

Bellucia pentamera 25.43±1.29a 0.11±0.01bc 26.74±5.05b 4.62±0.14b 8.27±0.78a 71.93±6.46a

Guarea guidonia 16.78±1.29bc 0.09±0.01c 27.88±5.05b 5.01±0.14ab 1.75±0.82bc 46.21±6.75bc

Psidium guajava 18.89±1.29b 0.09±0.01c 11.98±5.05b 4.55±0.14b 4.22±0.78bc 58.48±6.46ab

Zygia longifolia 17.4±1.29b 0.16±0.01a 46.52±5.05a 5.14±0.14a 0.9±0.78c 21.72±6.46d

Equal letters between species indicate equal means (P > 0.05, n = 36). C.E.C: Cation Exchange Capacity.

https://doi.org/10.1371/journal.pone.0261612.t002
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distribution of macrofauna groups. For instance, the soils below the species Andira inermis
and Zygia longifolia were related to Araneae, Hemiptera, Diptera, and Gasteropoda, while

those of Bellucia pertamera and Psidium guajava were related to the Homoptera and Diplo-

poda. The PC2 projected the Dermaptera group in the upper part and the Coleoptera group in

its lower part. Both groups did not show a strong relationship with any tree species. The sepa-

ration of the tree species according to the macrofauna groups was significant, indicating the

incidence of the species on the macrofauna (P = 0.0281) (Fig 5).

The PCA for edaphic properties (physical and chemical) explained 61.2% of the total vari-

ability of the data with the first two components. PC1 is related to the species P. guajava and B.

Fig 3. Soil bulk density values in the species-by-distance interaction at 20 cm depth. Equal letters within species indicate equal means (P> 0.05).

https://doi.org/10.1371/journal.pone.0261612.g003

Table 3. Penetration resistance (Mean±S.E.) in the combination of tree species by distance at three different depth in grazing areas of pastures in the Colombian

Amazon.

Tree Species Soil resistance at 10 cm (kPa cm-2) Soil resistance at 20 cm (kPa cm-2) Soil resistance at 30 cm (kPa cm-2)

Below crown Outside of crown Below crown Outside of crown Below crown Outside of crown

Andira inermis 171.88±16.67a 157.02±16.67a 194.38±17.91a 186.5±17.91a 195.27±17.66a 189.63±17.66a

Bellucia pentamera 99.88±16.67a 92.23±16.67a 99.88±17.91a 90.12±17.91a 90.25±17.66a 82.27±17.66a

Guarea guidonia 181.15±16.67a 171.13±16.67a 200.38±17.91a 193.38±17.91a 213.4±17.66a 215.77±17.66a

Psidium guajava 111.83±16.67a 111.42±16.67a 124.58±17.91a 112.58±17.91a 120.17±17.66a 109.5±17.66a

Zygia longifolia 191.47±16.67a 96.25±16.67b 195.83±17.91a 106.67±17.91b 197.5±17.66a 106.67±17.66b

Equal letters between species indicate equal means (P > 0.05).

https://doi.org/10.1371/journal.pone.0261612.t003
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pentamera with the highest Al saturation, moisture, CEC, SOC and SOM; while the species A.

inermis and Z. longifolia are characterized by having higher values of pH, soil resistance to pen-

etration, available P, exchangeable Ca, and silt. PC2 separated the species Z. longifolia charac-

terized by having the highest levels of exchangeable Mg and Na. The effect under the cover of

the species were significant according to the Monte Carlo test (Fig 6).

When investigating the relationships between data sets of tree species using Co-inertia anal-

ysis, eight significant correlations were found. All tree species obtained significant relation-

ships when contrasting the chemical and physical properties of the soil, except for P. guajava.

Regardless of the arboreal species, significant relationships were found under the cover when

macrofauna data were contrasted with the physical and chemical properties of the soil

(Table 4).

Discussion

The greater abundance of the macrofauna below the crown of A. inermis, G. guidonia, P. gua-
java, and Z. longifolia trees than abundance outside of crown in grazing areas of pastures is

presumably due to two factors: the quality of litter and microclimatic conditions. Trees that

are present in grazing areas contribute to the SOM of soil due to the entry of senescent leaves,

bark, branches, and roots to the system that are decomposed by the macrofauna [48]; and the

Fig 4. Percentage of soil moisture for the combination of tree species by distance at 20 cm depth in grazing areas of pastures in the Colombian

Amazonian piedmont. Equal letters within species indicate equal means (P> 0.05).

https://doi.org/10.1371/journal.pone.0261612.g004
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presence of these individuals depends on the quantity and quality of litter provided by each

species [49]. The factor that had the greatest impact on macrofauna populations was the dis-

tance, a situation that has also been described for other tree species such as Croton megalocar-
pus, Eucalyptus grandis and Zanthoxylum gilletii [50]. Likewise, this higher population below

the crown is due to traits related to the quality of the leaf litter, which influences the increase of

individuals under this position [50].

In our study we found differences in macrofaunal populations according to tree species, a

condition that has been a characteristic in different studies. For example, Vohland and Schroth

[51] found that the general abundance of fauna was significantly higher in Bactris gasipaes and

Bixa orellana compared to that obtained in Bertholletia excelsa and Theobroma grandiflorum,

because of differences in the quality of plant tissue. Similarly, Gholami et al. [52] found that

the abundance and diversity of the macrofauna were spatially related to the density of tree

cover, the diversity, and uniformity of the tree species and that they may be related to the

Fig 5. Projection on the factorial plane of the first two axes of a principal component analysis of the edaphic macrofauna variables and of the sampling

points grouped according to tree species. A. Correlations of edaphic macrofauna groups. B. Sorting of samples by macrofaunal variables and identified by tree

species.

https://doi.org/10.1371/journal.pone.0261612.g005
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microclimate conditions provided by them, showing that the density of trees and their diver-

sity could be the key drivers of the spatial pattern of soil macrofauna diversity.

On the other hand, Laossi et al. [53] have pointed out that the abundance of soil fauna is

affected by the quality of the litter and to a greater extent by its quantity. Zygia longifolia and

Fig 6. Projection on the factorial plane of the first two axes of a principal component analysis of edaphic variables and sampling points grouped

according to tree species. A. Macrofauna correlations. B. Sorting of samples by edaphic variables according to tree species.

https://doi.org/10.1371/journal.pone.0261612.g006

Table 4. Matrix coefficient (RV) between the three datasets for tree species and location.

Species Macrofauna—soil chemical Macrofauna—soil physical Soil chemical—soil physical

RV p-value RV p-value RV p-value

Andira inermis 0.277 0.433 0.324 0.425 0.618 0.007�

Bellucia pentámera 0.453 0.076 0.430 0.166 0.715 0.004�

Guarea guidonea 0.387 0.599 0.434 0.448 0.584 0.009�

Psidium guajava 0.464 0.112 0.285 0.733 0.391 0.116

Zygia longifolia 0.376 0.481 0.428 0.091 0.738 0.001�

Below crown 0.277 0.008� 0.288 0.011� 0.578 0.001�

Outside of crown 0.168 0.418 0.205 0.235 0.606 0.001�

https://doi.org/10.1371/journal.pone.0261612.t004
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A. inermis presented the highest values in the abundance of the macrofauna under their covers.

These two species offer a high level of shade (they have a dense crown), which can probably

influence the microclimatic conditions of the soil under their crown. It has been reported in

several studies that below the cover of trees under tropical conditions, the temperature is on

average 2 to 3˚C lower than in open areas [54] and in some sites the difference may reach up

to 9.5˚C [55], thus affecting air/soil temperature [56, 57] and soil moisture [58, 59]. These con-

ditions are important as many soil organisms are sensitive to soil moisture and temperature

regimes [60].

The importance of trees in grazing areas was significant as below canopy populations of

macrofauna increased significantly compared to those in other production systems. These data

are consistent with those obtained by Durán et al. [61] and Rodrı́guez et al. [12] who carried

out their sampling without considering the effect of the influence of the tree canopy on pas-

tures that are in a certain state of degradation. Therefore, increasing the levels of shade in pas-

tures improves different ecosystem services [26, 62, 63] related mainly to the contribution of

biomass [64] (quantity and chemical composition), microclimatic conditions [62, 65] (humid-

ity and temperature) that affect the richness and density of the soil macrofauna community

[66]. In this sense, increasing the density of trees in pastures specifically in silvopastoral sys-

tems increases macrofauna populations [64, 67].

Rhoades [48] states that scattered trees in pastures affect the chemical conditions of the soil,

due to the entry of organic matter from leaves, bark, branches, and roots to the soil system,

which the soil fauna transforms and decomposes. This effect occurs in the same way for P. gua-
java with Mg+ and K+, and for Z. longifolia with K+, where the concentration of these elements

increases under the area of influence of their crowns. These results agree with those made by

Dahlgren et al. [68] in blue oak (Quercus douglasii), by Eldridge and Wong [69] in four species

of Eucalyptus sp., in a temperate zone of Australia, by De Boever et al. [70] in an arid ecosystem

in Tunisia, with Acacia raddiana trees, and those made by Kooch et al. [71] in the north of

Iran. In general, it demonstrates the importance of scattered trees in pastures to increase soil

fertility, being this, among other ecosystem services offered by trees in grazing areas [72].

Casals et al. [28] evaluated differences between the effects of legume and non-legume tree

species on soil nutrients and carbon reserves in pastures in Nicaragua, finding higher levels of

SOC, N, P, K+, and Ca2+ under the tree cover than in open field pastures, regardless of whether

they were legumes or non legumes, concluding that the magnitude of the effect depends more

on tree characteristics such as basal area and crown area than on whether or not the species is

a legume. Thus, when relating the effect of trees, De Boever et al. [70] found higher concentra-

tions of nutrients in the soil under the crown of the tree: 175% more compared to outside the

crown. However, other biotic and abiotic factors have been associated with the effects of indi-

vidual plants on soil properties, such as plant species [73], age [70], topography [74], soil tex-

ture [75] and functional traits of the tree species [29, 76] and the rate of fall and decomposition

of litter [77, 78]. In other types of ecosystems Avendaño-Yáñez et al. [79], Kumar et al. [80],

and Mohammed et al. [81] observed that trees improve the fertility of soils under their crowns.

We found a significant increase in exchangeable potassium under crown Psidium guajava and

Zygia longifolia.

The high values of soil bulk density observed under the crown of some species (A. inermis
and Z. longifolia) are mainly due to the use given by the animals as resting areas, where the soil

receive a pressure of 1.2 to 1.6 kg cm-2 [82]. This increase in soil bulk density was related to

high values in soil resistance to penetration under its crown. Comparing our results with those

presented by Frost and Edinger [83] and Dahlgren et al. [68] they report that they were lower

bulk density values. These differences are probably due to the continuous stocking as well as

the tree species found in the paddocks referenced in the previous studies. For example, Frost
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and Edinger [83] report lower bulk density values under Quercus wislizenii crowns than in

open grasslands, as well as Dahlgren et al. [68] who investigated the Quercus douglasii species

under different management combinations: Q. douglasii with stocking, Q. douglasii without

stocking, open grasslands with stocking and open grasslands without stocking; where the soils

that are under the crown of Q. douglasii presented a lower value of bulk density. Likewise, Tate

et al. [84] found that crown cover by any tree species they evaluated in their research signifi-

cantly reduced the bulk density of the soil surface (16 to 22%) compared to open grasslands.

Kumar et al. [80] in an arid region found that the bulk density values under three species (Pro-
sopis cineraria, Acacia Senegal, and Tecomella undulata) were lower than in the open field. Dif-

ferences observed in bulk density from the studies here cited might be the result of different

climatic conditions driving the behaviour of the animal occupying the paddocks thus causing

different compaction patterns. A. inermis and Z. longifolia are tree species that have dense and

large crowns that provide areas of greater shade at ground level, allowing grazing cattle to seek

these thermoregulation zones to lower body temperature due to high temperature that occurs

in the study area (25.5˚C). Moreover, the animals seek the grasses that grow under these areas

for their nutritional quality and sometimes the forage (leaves, flowers, and fruits) provided by

the trees. Similarly, another factor that can affect this physical variable is the precipitation in

the study area (3,793 mm).

Wilson [85] found that along 20 m long transects extending from the crown of trees of the

Eucalyptus melliodora, Eucalyptus blakelyi, and Eucalyptus nova-anglica, species, the bulk den-

sity increased significantly as distance increased relative to the canopies of the trees. In con-

trast, Kooch et al. [71] in an agroecosystem different from this research work, evaluated the

bulk density affected by trees in a mixed forest in Northern Iran, finding an increase in the

bulk density of the soil under trees of the Carpinus betulus species, due to the low presence of

SOM in the soil.

The species A. inermis and Z. longifolia are trees that have morphological and crown char-

acteristics that allow greater shade at ground level. This allows pastures to have a high concen-

tration of animals in shady sites, negatively affecting the physical properties of the soil and

especially the bulk density with high levels of compaction. This can lead to a reduction in root

density [86] as well as the volume of soil pores and consequently, the infiltration of water [87,

88] at different depths of the soil. This explains the results found in this work, where the per-

centage values of soil moisture were higher outside the tree crown than under it.

Stocking density in our study was two animals ha-1. Schmalz et al. [89] found an increment

in the penetration resistance when comparing paddocks with different stocking densities, pen-

etration resistance was higher in paddocks with 1.56 animals ha-1 compared to those with 0.52

animals ha-1. Additionally, Greenwood & McKenzie [88] concluded that a stocking density of

1.9 to 2.4 animals ha-1 increases compaction and bulk density and decreases soil infiltration in

the first 20 cm. Consequently, farm management decisions must take into consideration stock-

ing density [89], particularly in climatic regions were animals due to high temperatures tend to

seek refuge under the tree crowns increasing compaction.

We provide evidence that the diversity and density of macrofaunal populations change

under the canopy as well as at the tree species level. Thus, increasing shade canopies in pad-

docks increases the sustainability of livestock production systems. Trees in paddocks provide

favorable conditions for macrofauna by increasing the amount of leaf litter in the soil, as well

as the chemical composition of the litter [90]. Therefore, as evidenced by the results of the co-

inertia analysis, by increasing macrofauna populations there is a significant effect on soil

chemical (available P, K, Na, CEC, pH, Al saturation) and soil physical characteristics (bulk

density, soil moisture and penetration resistance). Results from this study also demonstrated
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how trees in the grazing areas of the pastures in the Colombian Amazon increased some regu-

lation of ecosystem through improved soil fertility [91].
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Supervision: Fernando Casanoves, Juan Carlos Suárez.
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77. Lanuza O, Casanoves F, Delgado D, Van den Meersche K. Leaf litter stoichiometry affects decomposi-

tion rates and nutrient dynamics in tropical forests under restoration in Costa Rica. Restor Ecol. 2019

May 1; 27(3):549–58.

78. Lanuza O, Casanoves F, Zahawi RA, Celentano D, Delgado D, Holl KD. Litterfall and nutrient dynamics

shift in tropical forest restoration sites after a decade of recovery. Wiley Online Libr [Internet]. 2018 May

1 [cited 2021 Mar 22]; 50(3):491–8. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/btp.

12533.
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