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Abstract

Background

Commonly used medications produce changes in the gut microbiota, however, the impact

of these medications on the composition of the oral microbiota is understudied.

Methods

Saliva samples were obtained from 846 females and 368 males aged 35–69 years from a

Canadian population cohort, the Atlantic Partnership for Tomorrow’s Health (PATH). Sam-

ples were analyzed by 16S rRNA gene sequencing and differences in microbial community

compositions between nonusers, single-, and multi-drug users as well as the 3 most com-

monly used medications (thyroid hormones, statins, and proton pump inhibitors (PPI)) were

examined.

Results

Twenty-six percent of participants were taking 1 medication and 21% were reported taking 2

or more medications. Alpha diversity indices of Shannon diversity, Evenness, Richness,

and Faith’s phylogenetic diversity were similar among groups, likewise beta diversity as

measured by Bray-Curtis dissimilarity (R2 = 0.0029, P = 0.053) and weighted UniFrac dis-

tances (R2 = 0.0028, P = 0.161) were non-significant although close to our alpha value

threshold (P = 0.05). After controlling for covariates (sex, age, BMI), six genera (Saprospira-

ceae uncultured, Bacillus, Johnsonella, Actinobacillus, Stenotrophomonas, and Myco-

plasma) were significantly different from non-medication users. Thyroid hormones, HMG-

CoA reductase inhibitors (statins) and PPI were the most reported medications. Shannon

diversity differed significantly among those taking no medication and those taking only thy-

roid hormones, however, there were no significant difference in other measures of alpha- or

beta diversity with single thyroid hormone, statin, or PPI use. Compared to participants tak-

ing no medications, the relative abundance of eight genera differed significantly in
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participants taking thyroid hormones, six genera differed in participants taking statins, and

no significant differences were observed with participants taking PPI.

Conclusion

The results from this study show negligible effect of commonly used medications on micro-

bial diversity and small differences in the relative abundance of specific taxa, suggesting a

minimal influence of commonly used medication on the salivary microbiome of individuals

living without major chronic conditions.

Introduction

Knowledge of how microbes contribute to human health and disease is increasing rapidly and

over the last several years we have gained insight into how microbes interact with certain med-

ications. Medications may alter the composition of the microbiota, altering efficiency and pro-

ducing side effects [1–3]. Several studies have demonstrated that commonly prescribed

medications can alter the diversity/composition of the gut microbiota [4–8]. Furthermore, it

has been shown that members of the gut microbiome can enzymatically alter various medica-

tions altering their efficacy [3]. Much of the current research on medication use and the gut

microbiome focus on a hand full of medications such as antibiotics, diabetes medication, and

protein pump inhibitors (PPIs) [4–8]. However, more recent research across multiple cohorts

suggests that in addition to antibiotics, PPIs and metformin, multiple commonly prescribed

medications such as anticholinergic inhalers, paracetabol, selective serotonin reuptake inhibi-

tors (SSRI), laxatives, and opioids are associated with the gut microbiota composition and/or

changes in specific taxa [9, 10].

Interestingly, in addition to PPIs altering the microbial composition of the gut, they also

increase the relative abundance of oral bacterial species in the gut microbiome [5]. Impor-

tantly, the gut is not the only human microbiome influenced by medication use. PPI treatment

may influence microbial communities within different areas of the body such as the oral cavity

[11, 12], esophagus [11], and stomach [13]. For example, PPI treatment has been reported to

alter bacterial composition by reducing alpha diversity and altering the abundance of specific

taxa in the oral cavity [12].

The oral cavity represents the initial part of the digestive tract and has a unique and diverse

microbial composition that is reflective of distinct niches such as the teeth, cheek, hard palate,

tongue and saliva [14–16]. The saliva includes microbiota dethatched from the various niches

of the oral cavity and exhibits overlapping microbial profiles with several oral niches [16, 17].

The oral microbiome plays an important role in maintaining oral health homeostasis by sup-

porting oral health or contributing to local conditions such as periodontitis, dental caries, and

endodontic infections [18, 19] as well as diseases such as diabetes, obesity, cancer, and inflam-

matory bowel disease [14, 18, 20].

Our previous research demonstrates the composition of the salivary microbiome is associ-

ated with several sociodemographic, lifestyle, and anthropometric factors [21]. Importantly,

this work established that the above factors were only able to explain a small extent of the vari-

ability between samples, indicating that each of these factors on their own contributes little to

overall oral microbial diversity and that other factors must also contribute to the composition

of an individual’s oral microbiome. One factor contributing to differences in microbial com-

position may be prescription medications and although much of the previous research has
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focused on the gut microbiome [2, 4, 6, 8–10], multiple medications have been reported to

impact oral health causing symptoms such as dry mouth, lesions, ulcers, and altered taste [22,

23]. Therefore, it is likely that medication use may also be disrupting the oral microbial com-

munity. Research suggests that administration of PPI alters salivary microbiota diversity [12]

and shifts the proportions of relative taxa [24]. Research on medication use and the oral micro-

biota is extremely limited but knowing that prescription medications cause side effects in the

oral cavity and augment the microbiome at other body sites, it is plausible that commonly

used medications could influence the oral microbiome. Since the oral microbiome plays an

important role in health and disease, research on factors such as common medications that

may alter the oral microbiota are needed as they could have unintended consequences on

human health. Therefore, this study aimed to investigate the role of commonly used medica-

tions on the composition and diversity of the oral microbiota of adults taking single or multi-

ple medications, as well as the most commonly reported medications in the cohort. We

hypothesized that the use of medications would be associated with changes in oral microbiota

composition and diversity, and further augmented with the use of multiple medications.

Materials and methods

Ethics

Ethics approval for the Atlantic Partnership for Tomorrow’s Health (PATH) study was given

by the appropriate provincial and regional ethics boards in each Atlantic province (New

Brunswick: Horizon Health Network and Vitalité Health Network; Nova Scotia: Nova Scotia

Health Authority Research Ethics Board and IWK Research Ethics Board; Newfoundland and

Labrador: Health Research Ethics Board Newfoundland; Prince Edward Island: Health Prince

Edward Island). All participants provided written informed consent before participation in the

study. This research has been conducted using Atlantic PATH data and biosamples, under

application #2018–103.

Cohort description and study design

The use of a cross-sectional study design allowed us to conduct a rapid analysis and gain a

glimpse into the role of the oral microbiome from a population-based cohort while comparing

multiple drugs at the same time and controlling for other variables. This cross-sectional study

examined participant data from the Atlantic PATH cohort. Atlantic PATH is part of the Cana-

dian Partnership for Tomorrow’s Health (CanPath) Project, a national prospective cohort

study examining the influence of genetic, environmental, and lifestyle factors in the develop-

ment of chronic disease. Between 2000–2019 CanPath recruited participants between the ages

of 30–74 years. Further details on recruitment and data collection have been previously

detailed [25, 26]. At baseline, participants completed a standardized set of questionnaires

(available at: https://www.atlanticpath.ca/) and a subset of participants also had anthropomet-

ric measures, including BMI, and biological samples collected. Biological samples included

blood, urine, toenails, and saliva samples.

Over 8,000 saliva samples were collected; 1,214 samples were included in this study based

on the inclusion criteria: (i) oral microbiota data available, (ii) non-smoker, and (iii) no major

chronic conditions. Major chronic conditions were self-reported data and included any of the

following conditions: hypertension, myocardial infarction, stroke, asthma, chronic obstructive

pulmonary disease, major depression, diabetes, inflammatory bowel disease, irritable bowel

syndrome, chronic bronchitis, emphysema, liver cirrhosis, chronic hepatitis, dermatologic dis-

ease (psoriasis and eczema), multiple sclerosis, arthritis, lupus, osteoporosis, and cancer.
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Sociodemographic characteristics of these participants have been summarized and previously

published [21].

Medication data

Self-reported prescription medication data were collected through the baseline questionnaire.

Participants were asked if they were currently taking any medications prescribed by a doctor

and dispensed by a pharmacist (yes/no/don’t know) and if yes, asked to provide the name of

the medication along with the drug identification number (DIN). This information was used

to code medications according to the Anatomical Therapeutic Chemical (ATC) Classification

System at level 4, representing the chemical, therapeutic, and pharmacological subgroup (e.g.,

proton pump inhibitors) [27]. Participants were then grouped as none, single, or multi medi-

cation users according to classification at the fourth level of the ATC code. Participants that

were taking one unique medication at ATC code level 4 were classified as a ‘single’ medication

user, those taking�2 unique medications at the ATC code level 4 were classified as a ‘multi’

medication user and those that completed the questionnaire without listing any medications

were assumed to not be taking any medications and classified as ‘none’. Subsequently, the fre-

quency of each reported medication at ATC code level 4 was assessed to determine the most

commonly reported medications. Medications that were reported more than 5 times are listed

in Table 1, with thyroid hormone medications, proton pump inhibitors, and HMG CoA

reductase inhibitors (statins) being the 3 most frequently reported. Participants that were tak-

ing the most frequently reported medications were further divided into those that were only

taking the specific medication or those that were taking the specific medication plus other

medications (eg. Thyroid, Thyroid+, Statin, Statin+, PPI and PPI+). These specific medication

groups and the none, single, and multi-medication groups were used for further statistical

analysis on oral microbial composition and diversity.

16S rRNA gene sequencing and analysis. Raw 16S rRNA gene sequencing data were pro-

cessed as previously described [21]. Briefly primer trimmed paired end reads were stitched

together using VSEARCH [28] and quality filtering using QIIME2 [29]. Reads were trimmed

to 360 bp and the QIIME2 Deblur plugin [30] was used to produce amplicon sequence variants

(ASVs). ASVs found in an abundance less than 0.1% of the mean sample depth across all sam-

ples were filtered out. Taxonomy was assigned using a naïve Bayesian QIIME2 classifier

trained on the 99% Silva V132 database [31–33]. Diversity and dissimilarity measures for

alpha and beta diversity were generated as previously described by rarifying samples to 5000

reads [21], and samples with under 5000 reads were removed resulting in 1,049 samples for

the statistical analysis.

Statistical analysis

Statistical analysis was conducted using R Version 4.0.2. Chi-square analyses were used to

determine significant associations between sex and medication use, and if significant was fol-

lowed by pairwise Fisher’s exact test. Differences in continuous variables such as age and BMI

were analyzed using the Kruskal-Wallis test, if necessary, followed by pairwise comparisons

with Dunn’s tests (adjusted using Bonferroni correction). An alpha value of 0.05 was chosen

for determining significance. Categorical variables are presented as frequency (counts) and

percentage (%), and continuous variables are presented as medians and interquartile ranges

(IQR). Statistical analysis of filtered taxonomic data (n = 1,049), including relative abundance

plots, alpha and beta diversity comparisons, and principal coordinate analysis (PCoA) plots

were performed using the R packages vegan and ggplot2.
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Table 1. Most frequently reported medication according to ATC code level 4.

Level 1

ATC code

Level 1 Drug Class Level 4

ATC code

Level 4 Drug Class Route of administration Total Single Multi

A Alimentary tract and metabolism

A02BC Proton pump inhibitors oral, parenteral 108 38 70

A02BA H2-receptor antagonists oral, parenteral 14 5 9

- Other+ 17 3 14

B Blood and blood forming organs

B01AC Platelet aggregation inhibitors oral, parenteral, inhal. solution 32 5 27

B01AA Vitamin K antagonists oral, parenteral 5 0 5

- Other+ 7 3 4

C Cardiovascular system

C10AA HMG CoA reductase inhibitors oral 111 36 75

C07AB Beta blocking agents, selective oral, parenteral 10 2 8

C10AB Fibrates oral 6 3 3

C10AX Other lipid modifying agents oral, parenteral 6 0 6

C07AA Beta blocking agents, non-selective oral, parenteral 5 1 4

C03AA Thiazides oral 5 0 5

- Other+ 31 6 25

D Dermatologicals

D07AC Corticosteroids, potent (group III) topical 7 1 6

- Other+ 21 3 18

G Genito urinary system and sex

hormones

G03CA Natural & semisynthetic estrogens oral, nasal, rectal, transdermal,

vaginal

40 7 33

G03DA Sex hormones and modulators oral, parenteral, rectal, vaginal 19 1 18

G03AA Progestogens and estrogens, fixed

combinations

varied routes 17 10 7

G02BA Intrauterine contraceptives. vaginal 7 4 3

G04BD Drugs for urinary frequency and

incontinence

oral, parenteral, transdermal 7 1 6

G03AB Progestogens and estrogens,

sequential preparations

varied routes 6 3 3

G03BA 3-oxoandrosten (4) derivatives oral, parenteral, rectal, sublingual/

buccal/oromucosal, transdermal

6 0 6

G03FA Progestogens and estrogens varied routes 5 2 3

G04CA Natural and semisynthetic estrogens oral 5 2 3

G04CB Testosterone-5-alpha reductase

inhibitors

oral 5 0 5

- Other+ 17 3 14

H Systemic hormonal preparations,

excluding sex hormones and insulins

H03AA Thyroid hormones oral, parenteral 131 60 71

- Other+ 6 3 3

J Antineoplastic and immunomodulating

agents

J05AB Nucleosides and nucleotides excl.

reverse transcriptase inhibitors

oral, parenteral 7 1 6

- Other+ 6 3 3

L Antineoplastic and immunomodulating

agents

Other+ 5 2 3

(Continued)
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Differential abundance analysis

As previously described, there are a myriad of different packages for identifying differential

abundant microbes in 16S rRNA gene sequencing data. Based on previous research on these

tools we have found that presenting the results from several different tools can increase the

interpretability and reproducibility of findings [34]. As such, differential abundance analysis of

bacterial genera was conducted on non-rarified counts using four different tools designed for

differential abundance analysis: Corncob version 0.2.0 [35], ALDEx2 version 1.22.0 [36], MaA-

sLin2 version 1.4.0 [37], and ANCOM-II version 2.1 [38]. For differential abundance testing, a

prevalence cut-off filter was set to remove genera found in fewer than 10% of samples.

Table 1. (Continued)

Level 1

ATC code

Level 1 Drug Class Level 4

ATC code

Level 4 Drug Class Route of administration Total Single Multi

M Musculo-skeletal system

M01AE Propionic acid derivatives oral, parenteral, rectal 19 11 8

M05BA Bisphosphonates oral, parenteral 19 4 15

M01AH Coxibs oral, parenteral 10 4 6

- Other+ 20 5 15

N Nervous system

N06AB Antidepressants -selective serotonin

reuptake inhibitors

oral, parenteral 62 24 38

N06AX Other Antidepressants oral 34 8 26

N06AA Non-selective monoamine reuptake

inhibitors

oral, parenteral 18 8 10

N02CC Selective serotonin (5HT1) agonists oral, nasal, parenteral, rectal 15 2 13

N05CF Benzodiazepine related drugs oral 13 3 10

N05BA Benzodiazepine derivatives oral, sublingual/buccal/oromucosal

parenteral, rectal

9 0 9

N02AA Natural opium alkaloids oral, parenteral, rectal 7 2 5

N06BA Centrally acting sympathomimetics. oral, parenteral 7 2 5

N03AX Other antiepileptics oral, parenteral 6 1 5

N03AE Benzodiazepine derivatives oral, parenteral 5 1 4

- Other+ 33 7 26

P Antiparasitic products, insecticides and

repellents

- Other+ 2 0 2

R Respiratory system

R01AD Corticosteroids nasal 29 8 21

R06AX Other antihistamines for systemic

use

oral, parenteral 6 2 4

- Other+ 19 5 41

S Sensory organs

S01ED Beta blocking agents topical 8 2 6

S01EE Prostaglandin analogues topical 8 4 4

Other+ 6 2 4

U Unknown - unknown 19 5 14

+All other medications in this category that had less than 5 counts total and were combined into ‘Other’.

Bold text indicates the top 3 most frequently reported medications at ATC Level 4.

https://doi.org/10.1371/journal.pone.0261032.t001
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Furthermore, all differential abundance testing was done while controlling for covariates (sex,

age, and BMI).

Differential abundance testing between different medication groups using Corncob was

conducted using the “differentialTest” function and plotted as log odds. During this analysis in

addition to controlling for the covariates described above, we also controlled for differential

variability in taxonomic relative abundances. ALDEx2 package testing was done using the

“aldex.glm” and “aldex.clr” functions. Default parameters were used along with a total of 128

Monte Carlo samplings to ensure robust test statistics. ANCOM-II testing was done using the

ANCOM-II package available at https://github.com/FrederickHuangLin/ANCOM. The main

“ANCOM” function was run with default parameters with a q value of 0.1. A taxa detected at

the 0.8 limit was considered to be significantly associated with the tested medication group of

interest. The MaAsLin2 R package was run using the function “maaslin2” with arcsine square

root transformation and default parameters. In each case when applicable resulting p values

were corrected for multiple hypothesis testing using the Benjamini and Hochberg algorithm.

An alpha value of q = 0.1 was chosen as statistically significance.

Diversity analysis

Four different alpha diversity metrics were assessed, which included Shannon diversity, even-

ness, Faith’s phylogenic diversity, and richness (number of ASVs). Alpha diversity of each

group was compared by Kruskal-Wallis test and if necessary, followed by pairwise compari-

sons with Dunn’s tests and Bonferroni correction. Two beta diversity metrics, Bray-Curtis dis-

similarity and weighted UniFrac distance, were analyzed using permutational multivariate

analysis of variance (PERMANOVA; adonis2 vegan function) with 10,000 permutations while

adjusting for covariates (sex, age, BMI). When PERMANOVA results were significant

(P<0.05), pairwise comparisons were conducted, and Bonferroni correction was applied to

correct for multiple comparisons between groups.

Results

Cohort and medication use

We analyzed saliva samples from 1,214 individuals (n = 846 females, n = 368 males) aged 35–

69 years with a median age of 56 [50–62] years and a BMI of 27 [24–30] kg/m2. Of these indi-

viduals, 644 (53%) reported taking no medications, 318 (26%) reported taking 1 medication

(single user) and 252 (21%) reported taking 2 or more medications (multi-medication user).

Multi-medication users were taking up to 10 unique medications at ATC code Level 4. Multi-

medication users were older (58 (52–62) years) than single (56 [50–61] years, P = 0.002) and

non-medication users (56 [49–62] years, P<0.001, S1 Table). BMI was 27 [24–30], 27 [24–30],

and 27 [25–30] kg/m2 in non-medication, single, and multi-medication users, respectively (P
= 0.026). Across medication groups, a similar proportion of females (67, 72, and 73%) and

males (33, 28, and 27%) were found to be non-, single, and multi-medication users, respec-

tively (P = 0.129).

Participants self-reported the use of 144 unique prescription medications (ATC level 4).

The most frequently reported medications are listed in Table 1. The top three most frequently

reported medication classes (Level 4 ATC code) were thyroid hormones, HMG-CoA reductase

inhibitors (statins) and proton pump inhibitors (PPI). One hundred and twenty-seven partici-

pants reported taking thyroid medications, and of those 91% were females and 9% were male

(S2 Table). Compared to participants taking no medications (56 years [49–62]), participants

taking thyroid medications plus other medications were older (59 years [54–62], P = 0.018),

but similar to those taking only thyroid medication (55 years [50–59], P = 1.000). The median
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BMI (P<0.891) of participants taking no medication, only thyroid medication, or thyroid plus

other medications were (27kg/m2 [24–30], 27 [23–30], 27 [24–30], respectively). One hundred

and eleven participants reported taking statin medication, and of those 51% were females and

49% were male. Compared to participants taking no medications, participants taking only

statin medication (P = 0.026), or statin plus other medications (P<0.001) were older (56 years

[49–62], 59 years [56–63], 61 years [57–64], respectively). The median BMI (P<0.076) of par-

ticipants taking no medication, only statins medication, or statin plus other medications were

similar (27kg/m2 [24–30], 28 [25–29], 28 [26–30], respectively). One hundred and six partici-

pants reported taking PPI, and of those 72% were females and 28% were male. Participants tak-

ing no medications, those only taking PPI or PPI plus other medications were similar ages age

(56 [49–62], 54 [49–61], 58 [52–62] years, respectively, P = 0.143) but had statistically different

BMI values (27 [24–30], 29 [26–32], 28 [26–30] kg/m2, respectively, P< 0.001).

Microbial composition and diversity of medication users

To investigate whether the oral microbiota was altered in individuals taking prescription medi-

cations, we analyzed alpha and beta diversities as well as the microbial relative abundances

obtained from saliva sample 16S rRNA gene sequencing data of medication and non-users.

The alpha diversity indices of Shannon diversity (P = 0.129), Faith’s phylogenetic diversity

(P = 0.062), richness (P = 0.210) and Evenness (P = 0.185) were not statistically different

among groups (Fig 1). Although the association with beta diversity and general medication

was close to our alpha value threshold (P = 0.05), it was not statistically significant as measured

by Bray-Curtis dissimilarity (R2 = 0.0029, P = 0.051) and weighted UniFrac distances (R2 =

0.0028, P = 0.164) controlling for sex, age, and BMI (Fig 2).

Using Corncob, which models the relative abundance of taxa using beta-binomial models,

the relative abundance of nine genera (Bacteroides, Saprospiraceae uncultured, Flavobacteria-

ceae unclassified, Bacillus, Johnsonella, Burkholderiaceae unclassified, Actinobacillus, Stenotro-
phomonas, andMycoplasma) were significantly different from non-medication users in the

unadjusted model. However, after controlling for covariates (sex, age, BMI) only six genera

(Saprospiraceae uncultured, Bacillus, Johnsonella, Actinobacillus, Stenotrophomonas, and

Mycoplasma) remained significantly different (Fig 3). The significant abundance coefficients

from the differential test conducted with Corncob are reported in S3 Table. Additional differ-

ential abundance tests using ALDEx2, MaAsLin2, and ANCOM2 were also conducted. Of the

above genera identified as differentially abundant by Corncob, only Johnsonella and Actinoba-
cillus were identified as differentially abundant by MaAsLin2 and no genera were identified

using ALDEx2 and ANCOM-II (S3 Table).

Influence of specific medications on microbial diversity

Finally, we examined oral microbial diversity and composition in participants taking the most

frequently reported medications (thyroid hormone/statin/PPI) either alone or in combination

with other medications. First, diversity among participants only taking thyroid hormones, stat-

ins or PPIs was assessed. Some measures of alpha diversity differed among thyroid hormone

users (Shannon diversity P = 0.041; Evenness P = 0.013; S1A and S1B Fig) but beta diversity

was non-significant among participants taking only thyroid hormones, statins, PPIs or no

medications (Bray-Curtis P = 0.104; weighted UniFrac p = 0.324; S1C and S1D Fig).

Next, we explored possible interactions with other medications by analyzing microbial

diversity in participants taking thyroid hormone/statin/PPI in combination with other medi-

cations. The Kruskal-Wallis test revealed overall significance with thyroid hormones users and

Shannon diversity (P = 0.011) and Evenness (P = 0.013). Subsequently, Dunn’s pairwise
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comparison showed that compared to those taking no medications, Shannon diversity

(P = 0.011; Fig 4A) and Evenness (P = 0.010) differed significantly to those only taking thyroid

hormones but was similar to those taking thyroid hormones in combination with other medi-

cation (Thyroid+). There was no significant difference in Shannon diversity and Evenness

among Statin and Statin+ users (P = 0.907 and P = 0.250, respectively) or PPI and PPI+ users

(P = 0.950 and P = 0.798, respectively) (Fig 4). The specific drug classes alone or in combina-

tion with other medications showed no differences in additional alpha diversity indices such

as Faith’s phylogenetic diversity (Thyroid P = 0.483; Statins P = 0.270; PPI P = 0.582), or rich-

ness (Thyroid P = 0.156; Statin P = 0.572; PPI P = 0.709). We did not find a significant associa-

tion with thyroid hormone or statin medications, alone or in combination, with beta diversity

as measured by Bray-Curtis dissimilarity (Thyroid Hormones R2 = 0.0041 P = 0.103; Statins R2

= 0.0044, P = 0.077; PPI R2 = 0.0048, P = 0.048; Fig 5) and weighted UniFrac distances (Thy-

roid Hormones R2 = 0.0043, P = 0.166; Statins R2 = 0.0057, P = 0.065; PPI R2 = 0.0067,

P = 0.038; S2 Fig) after controlling for sex, age, and BMI. In contrast, there was a significant

difference in Bray-Curtis dissimilarly (R2 = 0.0048, P = 0.048; Fig 5) and weighted UniFrac

Fig 1. Four different alpha diversity metrics, (A) Shannon diversity, (B) Faith’s phylogenetic diversity, (C) evenness, and (D) richness. No significant differences were

found when using a Kruskal-Wallis test. “None” represents participants taking no medications (n = 546); “Single” represents participants taking only one medication at

ATC code Level 4 (n = 274); “Multi” represents participants taking 2 or more medications at ATC code Level 4 (n = 225).

https://doi.org/10.1371/journal.pone.0261032.g001
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distances (R2 = 0.0067, P = 0.038; S2 Fig) among PPI users after controlling for sex, age, and

BMI. Subsequent pairwise comparison revealed this microbial diversity was driven by differ-

ences between non-medication users and PPI+ users (Bray-Curtis P = 0.485 for None vs PPI,

P = 0.092 for None vs PPI+ and P = 1.000 for PPI vs PPI+; weighted UniFrac P = 0.949 for

None vs PPI, P = 0.040 for None vs PPI+ and P = 0.912 for PPI vs PPI+).

At the genus level, the relative abundance of several genera between participants taking no

medications compared to those taking thyroid hormones were identified as being statistically

different using the R package Corncob (Bacteroides, Prevotella 6, Tannerella, Saprospiraceae

uncultured, Bergeyella, Bacillus, Veillonellaceae uncultured, andMycoplasma; S3A Fig). Using

this approach Statin use was also found to be associated with the relative abundance of several

taxa (Bacteroides, Bacillus, Catonella, Johnsonella, Neisseria, Stenotrophomonas; S3B Fig),

There were no statistical differences in those taking PPI (FDR q>0.1) after controlling for the

covariates sex, age, and BMI. The significant abundance coefficients from the differential test

conducted with Corncob for Thyroid and Statin medication users are reported in S4 and S5

Tables, respectively. Of the above genera identified as differentially abundant by Corncob,

only Neisseria showed a trend (P = 0.057) in Statin+ users by MaAsLin2 and no genera were

identified using both ALDEx2 and ANCOM-II (S5 Table).

Discussion

Research over the past several years has demonstrated that commonly prescribed medications

can alter the diversity/composition of the gut microbiota [4–10] as well as produce side effects

and alter drug efficiency [1–3]. Much of the previous literature on gut microbes has focused

specific single medications [4–8]. For example, two studies published in the journal GUT in

2016 reported the influence of PPI use on the gut microbiome [4, 5]. They both reported lower

gut microbial alpha diversity and an increase in the Streptococcaceae family with PPI use.

Interestingly, bacteria that are typically found in the oral cavity are increased in the gut micro-

biome of PPI users [5], suggesting a potential role for oral microbes to influence the health of

Fig 2. Beta diversity analyses among medication and non-medication users are represented by Principal Coordinates Analysis plots based on (A) Bray-Curtis dissimilarity

and (B) weighted UniFrac. “None” (grey dots) represents participants taking no medications (n = 546); “Single” (blue dots) represents participants taking only one

medication at ATC code Level 4 (n = 274); “Multi” (orange dots) represents participants taking 2 or more medications at ATC code Level 4 (n = 225).

https://doi.org/10.1371/journal.pone.0261032.g002
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non-oral areas of the body. Furthermore, gut microbes may not be the only human micro-

biome influenced by medication [11–13]. Recent research demonstrates that medications such

as PPIs may also modify the oral microbiota [12, 24]. In addition, multiple medications are

known to cause oral side effects, thus it is probable that other commonly used medications

may influence the oral microbial community as well. Oral microbial communities are espe-

cially diverse in terms of community membership or species richness [39] and is predominated

by Streptococcus, Veillonella, Prevotella, and Neisseria [21, 40]. Although the oral microbiome

plays an important role in health and disease [14, 18–20], research on medication use and the

oral microbiota is very limited.

While many studies have reported changes in the gut microbiota with commonly used

medications [9, 10] much less is known about the microbes of the oral cavity in relation to

commonly used medications. Therefore, a cross-sectional observational study was conducted

to assess the associations between medication use and the oral microbiome in a Canadian

cohort. Nearly half of the participants reported taking at least one prescription medication

with the most common medications being thyroid hormone, statin, and PPI medications.

Both alpha and beta diversity measures showed similar diversity patterns among single medi-

cation users, multi-medication users, and those taking no medication (Figs 2 and 3). But single

Fig 3. Differentially abundant genera in single and multi-medication users compared to non-medication users in (A) covariate unadjusted and (B) covariate adjusted

models. Covariates include sex, age, and BMI. Results were adjusted by False Discovery Rate (FDR) using Benjamini and Hochberg method and genera meeting an FDR of

q = 0.1 are presented. Non-medication users (n = 546); “Single” represents participants taking only one medication at ATC code Level 4 (n = 276); “Multi” represents

participants taking 2 or more medications at ATC code Level 4 (n = 225).

https://doi.org/10.1371/journal.pone.0261032.g003
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and multi-medication users displayed several genera (Saprospiraceae uncultured, Bacillus,
Johnsonella, Actinobacillus, Stenotrophomonas, andMycoplasma) that were significantly

enriched or depleted compared to non-medication users (Fig 3). Of the above noted genera,

Bacillus was significantly depleted in both thyroid hormone and statin users (S3 Fig). When

exploring specific medications in our initial analysis, we found the relative abundance of sev-

eral genera to significantly differ in participants taking thyroid hormones or statins compared

to participants taking no medications however, the majority of differences had small effect

sizes. Our recent work demonstrates that differential abundance methods produce variable

results [34] and since effect sizes in the current study were small, we analyzed our data using

Fig 4. Shannon diversity index among (A) Thyroid Hormone, (B) Statin, (C) PPI users compared to participants taking no medication. Compared using a Kruskal-Wallis

test and if necessary, followed with Dunn’s test. P-values above box plots indicate the results of Dunn’s tests with Bonferroni correction. None represents participants

taking no medications (n = 546); Thyroid represents participants only taking Thyroid Hormone medication (n = 54); Thyroid+ represents participants taking Thyroid

Hormone medication plus other medication(s) (n = 58); Statin represents participants only taking Statin medication (n = 30); Statin+ represents participants taking Statin

medication plus other medication(s) (n = 65); PPI represents participants only taking PPI medication (n = 31); PPI+ represents participants taking PPI medication plus

other medication(s) (n = 61).

https://doi.org/10.1371/journal.pone.0261032.g004

Fig 5. Beta diversity analyses among (A) thyroid, (B) statin, and (C) PPI users and non-medication users are represented by Principal Coordinates Analysis plots based on

Bray-Curtis dissimilarity. None represents participants taking no medications (n = 546); Thyroid represents participants only taking Thyroid Hormone medication

(n = 54); Thyroid+ represents participants taking Thyroid Hormone medication plus other medication(s) (n = 58); Statin represents participants only taking Statin

medication (n = 30); Statin+ represents participants taking Statin medication plus other medication(s) (n = 65); PPI represents participants only taking PPI medication

(n = 31); PPI+ represents participants taking PPI medication plus other medication(s)(n = 61).

https://doi.org/10.1371/journal.pone.0261032.g005
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three additional differential abundance tools. However, no taxa were recovered using the addi-

tional tools, indicating only minor evidence for shifts in the abundance of these taxa.

As mentioned above, much of the literature published on medication use and the micro-

biome has focused on single medication use [4–8]; however, there are several situations or dis-

ease conditions where an individual may be taking multiple medications. The use of

polypharmacy is higher in particular groups of people such as cancer survivors or patients

with specific chronic conditions like IBD [41–43]. Even in the current study which excluded

individuals with major chronic conditions, over 40% of participants taking prescription medi-

cations reported taking more than 1 type of medication. A recent study by Vila and colleagues

examined the relationship between the gut microbiome and commonly used medications [10].

In that study, the authors examined 3 cohorts (a general population, IBD, and IBS cohort) and

found that the median number of medications was 0, 2, and 1 for each cohort, respectively

(overall range = 0–12 medications per participant) but over 500 different combinations of

medications were reported. There were no significant changes in microbial richness per num-

ber of medications used (alpha-diversity) but there were significant differences in beta diver-

sity and the number of medications used in all cohorts [10]. In contrast to the findings by Villa

et al., the current study of the oral microbiome found no differences in alpha or beta diversity

between general medication use (single and multi-medication users; Figs 1 and 2).

In the current study, the use of thyroid hormones (thyroxine) resulted in a significant

increase in the alpha diversity of the oral cavity, whereas previous reports of gut microbial

diversity in patients taking the thyroid hormone thyroxine showed no statistical differences

from controls (not receiving thyroxine) [44]. Khan and associates investigated the impact of

statins on gut microbiome composition and reported differences in alpha and beta diversity

measures, with more variability in the untreated hypercholesterolemic patients (n = 15) com-

pared to statin-treated hypercholesterolemic patients (n = 27) or non-hypercholesterolemic

individuals (n = 19) [45]. The study also showed that statin-treatment shifted alpha diversity in

the gut closer to non-hypercholesterolemic individuals and was dominated by a higher relative

abundance of the families Ruminococcaceae (Clostridia, Firmicutes) and Verrucomicrobia-

ceae (class, Verrucomicrobia) and the species Faecalibacterium prausnitzii (clostridia, Firmi-
cutes) [45], two of which belong to the phyla Firmicutes and highly prevalent in the gut. In the

current oral microbiome study, statin use (n = 111) was also associated with small shifts in oral

microbial composition of specific genera that belong to Firmicutes phyla such as Bacillus,
Catonella, and Johnsonella (S3B Fig), but failed to observe significant changes in alpha diversity

of the oral microbiome (Figs 4B and 5B). Similarly, Villa at al. did not observe any significant

changes in alpha with statin use but did report significant differences in beta diversity with spe-

cific medications including statins and PPIs [10].

Previously published research on the influence of PPIs on the gut microbiome has displayed

mixed results on alpha diversity, reporting either lower alpha diversity or no difference [4, 5,

10]. In a small study of the oral microbiome (n = 10 participants), treatment with PPI (20mg

esomeprazole) for 4 weeks was shown to significantly decrease the relative abundance of sali-

vary Neisseria and Veillonella in healthy individuals (as defined by no medical treatments or

probiotics within 3 months) [12]. The study also showed that both Shannon diversity was

lower after PPI usage, and there were significant differences in beta diversity between PPI

users and non-users as determined by weighted UniFrac and Bray-Curtis distance multivariate

analysis [12]. The current study did not observe these same differences in alpha and beta diver-

sity measures, but there are several differences between the studies worth noting, such as study

design (intervention vs observational cross-sectional), sample and grouping size (n = 10 vs

n = 1000+ and the number of participants in control vs medication groups), the definition of

‘healthy’, dose and duration (unknown in the current study, possibly years), as well as the type

PLOS ONE Impact of common medications on the oral microbiome

PLOS ONE | https://doi.org/10.1371/journal.pone.0261032 December 9, 2021 13 / 19

https://doi.org/10.1371/journal.pone.0261032


of PPI. In the current study, all types of PPI were considered and the most commonly reported

were omeprazole, esomeprazole, pantoprazole, and rabeprazole.

The presence of certain diseases or conditions is worth noting when examining the influ-

ence of medications on the oral microbiome. In 2021 Kawar and colleagues reported findings

from a cross-sectional study examining the oral microbial communities of gastroesophageal

reflux disease (GERD) patients with or without PPI use compared to healthy controls (defined

as free of GERD and not using PPI) [24]. The study showed no significant differences in alpha

diversity among the groups but did report taxa that were significantly different between the

controls and GERD patients not taking PPI, and when GERD patients taking PPI were com-

pared to controls there were no taxa that showed significant difference. The microbial profiles

of GERD patients taking PPI look more similar to the health controls (no disease, no PPI use).

It is unclear if these shifts in microbial populations observed with PPI use cause direct health

benefits, but when studying specific diseases or conditions, it does stress the importance of

considering if patients are currently receiving treatment or not.

Shifts in specific oral taxa have been noted in multiple non-oral host diseases such as diabe-

tes, cancer, and atherosclerosis [18, 46], suggesting a relationship between oral dysbiosis and

systemic disease. The management of many chronic conditions or clinical symptoms often

requires the use of one or more prescription medications, which may perturb the oral micro-

biome. For example, Yang and colleagues compared the salivary microbiome of treatment-

naïve diabetic patients to those treated with metformin alone or a combination treatment

(insulin plus metformin or other hypoglycemic drugs) [47]. Compared to treatment-naïve

patients, those taking metformin showed significant changes in 11 genera and the combination

treatment showed significant changes in 15 genera and noticeably changes in only 3 genera

(Blautia, Cobetia and Nocardia) were similar between the two treatment groups. Neither the

alpha diversity nor the beta diversity of the salivary change significantly with metformin or

combined treatment but diversity measures were significantly different between nondiabetic

and diabetic patients. Significant differences were noted at the phylum, genus and species level

of nondiabetic individuals compared to treatment-naïve diabetic patients [47]. This work

highlights changes in salivary bacteria between individuals with and without diabetes but also

differential effects of single or combination medication treatment.

The studies discussed above emphasize some important considerations for future research

and stress some limitations and strengths of the current study. One challenge of our work and

others in the field is the reliance on self-reported data. Self-reported data are limited by social

desirability and recall bias, however self-report offers a noninvasive, minimal patient burden

means to access large amounts of personal data in large populations. Self-reported medication

data shows overall agreement with prescription databases, although variations among different

drug classes is worth consideration [48–50]. Another consideration for self-reported medica-

tion data is the amount of information collected. For instance, this data often lacks greater

level of detail on history, dosage, duration, and route of administration. In the current study,

participants were only asked about current prescription medication use and requested to pro-

vide the name of the medication and the DIN however, most participants only provided the

general drug name, making it difficult to code past level 4 of the ATC or dosage and route of

administration. On the other hand, the use of self-reported questionnaire data often includes

the collection of a large about of demographic and lifestyle data along with health information.

Participants of the Atlantic PATH cohort examined in this study completed questionnaire

data on various demographic, anthropometric, and lifestyle factors including smoking, alcohol

use, physical activity, and diet. Smoking has previously been shown to alter alpha and beta

diversity as well as several taxa of the oral microbiome [51, 52] and thus was used as exclusion

criteria for the current study. Our previous study on the healthy oral microbiome explored
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demographic, anthropometric, and lifestyle factors (including diet, alcohol use, and physical

activity) and showed that several anthropometric measurements as well as age and sex, were

associated with overall oral microbiome structure but individually each factor was associated

with only minor shifts in the overall taxonomic composition of the oral microbiome [21].

With this knowledge, confounding factors such as sex, age, and BMI were controlled for dur-

ing analysis in the current analysis. Finally, underlying health conditions should be considered

because the composition and the diversity of both the gut and oral microbiomes differs in

many chronic diseases [9, 10, 14, 18–20]. Participants in the current study self-reported major

chronic conditions by answering a set of closed ended questions on several different diseases,

but the list was not comprehensive. Importantly these participants will be followed for up to 30

years by linkage to administrative health databases in the future. Moving forward this will pro-

vide a wealth of information related to disease including a broader range of conditions, disease

activity and therapeutic approaches. Since microbes can metabolize a wide range of different

medications [53] and have the potential to alter their mechanism of action, future research on

the interaction between medications and the microbiome in specific diseases is necessary to

provide insight into anticipated therapeutic outcomes.

Conclusions

In conclusion, our study shows that at the genus level the oral microbiome is relatively similar

between individuals with no major chronic conditions taking commonly prescribed medica-

tions with some evidence indicating shifts in a minor number of taxa. Data from this cross-sec-

tional study may be useful for designing future studies with more focused questions on specific

types of medications, dosage, duration, and route of administration. The oral microbiome

offers a potential tool for screening health status, forecasting future disease risk or predicting

treatment outcomes. However, we need to gain a better understanding of the effects of specific

diseases on the oral microbiome as well as the influence of commonly prescribed medications

for those diseases. Future longitudinal studies with linkage to provincial Drug Information

Systems are necessary to study patients before and after administration of specific medications

along with appropriate controls in large cohorts.
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