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Abstract

The front retaining wall (FRW) is an effective facility of selective withdrawal. Previous

research has not estimated the effect of FRWs on the thermal regimes of reservoirs and out-

flow temperature, which are crucial to reservoir ecology. For this purpose, taking the Dongq-

ing Reservoir as a case study, a two-dimensional hydrodynamic CE-QUAL-W2 model was

configured for the typical channel-type reservoir in the southwestern Guizhou Province, to

better understand the influence of FRWs on the thermal structure and outflow temperature.

The simulated data from January to September 2017 showed that FRWs can change the

vertical temperature distribution during the stratification period, accelerate the upper warmer

water release and thus decrease the strength of thermal stratification. The stratification

structure changed from a single thermocline to double thermoclines in August. An FRW

resulted in an average 11.8 m increase in the thickness of the hypolimnion and a 1.2˚C

decrease in the thickness of the thermocline layer. An FRW increased the outflow tempera-

ture by 0.4˚C and raised the withdrawal elevation by 16 m on average. The longitudinal

velocity increased compared with the non-FRW condition, while the maximum velocity posi-

tion moved up. In addition, FRWs can continuously obtain surface warmer water without

manual operation and have low investment and good construction conditions. This study

can provide an available selective withdrawal idea for reservoirs with similar hydraulic

conditions.

1. Introduction

When a dam impoundment meets a variety of water supply needs, it is bound to have an

impact on the spatiotemporal variation in the water temperature in the reservoir and down-

stream sections [1]. Water Temperature is an essential environmental factor of reservoirs that

can affect water quality, nutrient distribution and even ecosystems [2,3]. Due to the increase in

water depth, slow flow rate and longer time for surface water to receive solar radiation in reser-

voirs, vertical temperature stratification usually occurs in deep reservoirs [4], which has differ-

ent impacts on the thermal state of the reservoir area and the structure and function of the
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ecosystem [5,6]. In practice, stratification in reservoirs is affected by natural processes (such as

meteorological conditions) [7] and reservoir operation schemes. Moreover, stratification will

also lead to the phenomenon of discharged low water temperature in summer [8], significantly

changing the characteristics of water temperature in downstream rivers and harming the

water quality, metabolism and reproduction of aquatic organisms and agricultural irrigation

[9,10]. Thus, research on the evolution law of the stratified thermal state and discharged water

temperature is the basis for optimizing the allocation of reservoir water [11].

Reservoirs with a single outlet might release water that is too warm or too cold for down-

stream ecosystems, depending on reservoir temperature at the intake [3]. Currently, consider-

ing the severe effect of bottom-intake for withdrawal on ecology [12,13], which was commonly

employed in some north temperate countries in the 1960s, selective withdrawal systems have

been widely used to meet downstream temperature and other water quality objectives [14,15],

such as stoplog gates [16] and temperature-control curtains (TCCs) [17]. With the objective of

water quality changing, applying a selective withdrawal facility to a certain reservoir involves

many factors such as the improvement effect of outflow temperature, reservoir operation and

management mode, economic investment, safety performance and so on [18]. Focusing on a

reservoir that has impounded water, in regard to a deep run-off reservoir, which can redistrib-

ute the natural inflow of reservoirs in a day according to the daily load change process, the

water level changes less and a facility with variable withdrawal elevation like a stoplog gate or

temperature-control curtain is not necessary [19,20]. A front retaining wall (FRW) may be a

more suitable choice which can meet the needs of the easy operation and low cost.

The front retaining wall (FRW) is an available fixed-elevation selective withdrawal facility

composed of reinforced concrete. In terms of the flow region, a wall can be set before the

water intake and supported by the arms to block bottom water from entering the water intake.

Usually, the top elevation of an FRW is greater than the elevation of the water intake. In sum-

mary, the FRW is a new selective facility that has been successfully used in the Dongqing Res-

ervoir to reduce summer outflow temperature in the high-temperature period. There have

been many studies on the selective withdrawal systems and facilities [21,22]. However, little

attention has been specially given to the FRW, which is proven to have an impact on the ecol-

ogy downstream.

Many scholars have drawn a conclusion that selective withdrawal is the most effective

means of controlling the quality of water released downstream [23]. Deeper withdrawals also

facilitate heat transfer in the water column, increase the thickness of the metalimnion and

weaken the stratification stability [20,24]. Through experimental study and numerical simula-

tion, TCCs with different water-retaining proportions have been found to affect the flow field

and thermal characteristic in reservoirs [25]. A top-TCC is recommended for a smaller ther-

mal stability or a cool outflow in the summer [26]. Stop-log gates can mitigate the cold temper-

ature effect in spring and summer [27]. Moreover, stoplog gates can influence the flow

patterns including the flow regime and velocity distribution at the intake and the flow velocity

at the trash rack section varies vertically in a great manner [16]. Thus, for distinct water man-

agement requirements, both relevant selective withdrawal systems and corresponding thermal

properties may have a certain gap. As a new engineering measure, an FRW is mainly designed

for the controlling of water released downstream. Tuo et al. illustrated the remained old dam

dismantled above 240.2 m asl, standing before the new dam and acting as an FRW in Fengman

Reservoir (in northeast China), can strengthen the flow motion in the surface layer and lower

the outflow temperature in winter [28]. However, no studies have quantified the influence of

FRWs on the thermal characteristics in reservoirs, outflow laws and hydraulic characteristics,

which are crucial to the reservoir water environment.
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Dongqing Reservoir is a deep and impounded reservoir in China. An FRW was initially rec-

ommended to regulate the outflow temperature, and its effect on the thermal structure is

unknown. Taking Dongqing Reservoir as a case study, this paper aims to analyze the flow and

temperature field of the reservoir under FRW scenarios and to obtain their potential effects on

the thermal structure and outflow properties.

In this study, field observations were carried out in the Dongqing Reservoir from January

to September 2017, and a two-dimensional hydrodynamic CE-QUAL-W2 model was estab-

lished to simulate the vertical water temperature in front of the dam and discharged water tem-

perature with and without an FRW. The stratification characteristics, thermal stability and

hydrodynamic characteristics of the water temperature were compared and analyzed. This

study can provide a new idea and strategy for the management of selective withdrawal in deep

reservoirs.

2. Materials and methods

2.1 Study site and data acquisition

Dongqing Reservoir (25˚ 31’N, 105˚ 46’E) is a narrow, long and deep reservoir located in

southwestern Guizhou Province, China, with a surface area of 13,500 km2, a maximum dam

height of 149.5 m, a maximum water depth of 120 m, an average annual runoff of approxi-

mately 12.56×109 m3 and a storage capacity of 9.55×108 m3 under 490 m asl. The reservoir is a

typical subtropical reservoir with an average air temperature of 16.6˚C/yr. The average yearly

flow in the reservoir is 398 m3/s. The main reservoir is located on the Beipan River with a back-

water length of 41 km, while the tributary is the Dabang River with a backwater length of

approximately 26 km. A tower inlet is adopted by the power station with a floor elevation of

455 m asl. A cantilever-type reinforced concrete retaining wall is set at 13.5 m in front of the

inlet, and both sides of the retaining wall are connected to the inlet side pier. The top elevation

of the wall is 470 m asl with height of 15 m and thickness of 2 m (Fig 1).

To understand the thermal characteristics of this reservoir, we monitored the water temper-

ature from January to September 2017, including vertical profile measurements (Fig 1B1 at

predams), inflow water temperature (Fig 1A1 and 1A2), and outflow water temperature (Fig

1A3). A vertical thermal chain was set at section B1 (900 m upstream in front of the dam) for

long-term high-frequency monitoring using a TIDBIT V2 (UTBI-001) temperature recorder

(Onset, USA) at a measuring interval of 1 h. The vertical intervals of 43 water temperature sen-

sors for the chain were 1 m (0–10 m depth), 2 m (10–50 m depth), and 4 m (50–100 m depth).

The water temperatures of inflow and outflow were measured by a ZDR self-recording ther-

mometer. The inflow observation section was settled at the end of the mainstream backwater

(A1) and tributary backwater (A2), and the outflow monitoring section was in the release

water of Dongqing Power Station (A3) at a measuring interval of 1 h.

2.2 Numerical methods and simulations

In this paper, an unsteady two-dimensional model (along the longitudinal and vertical direc-

tions) is the minimum requirement to study spatial-temporal thermal regime variations in the

Dongqing Reservoir (Fig 1), which is a long-but-narrow reservoir with a longitudinal gradient

in temperature that is not small enough to be neglected. Consequently, we conducted the pres-

ent study by using CE-QUAL-W2, a two-dimensional laterally averaged hydrodynamic and

water quality model [29]. This model is mainly applied to water bodies with longitudinal and

vertical temperature gradients. It provides accurate simulations of stratification and density

currents and has been widely used to study various reservoirs and river impoundments world-

wide [30,31].
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Fig 1. Map of study locations and the structure of the water intake of Dongqing Hydropower station. (a) Map of study locations. (b) FRW

and the structure of the water intake.

https://doi.org/10.1371/journal.pone.0260779.g001
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We use this model to quantify thermal stratification and hydrodynamics in the Dongqing

Reservoir. This model is a water quality and hydrodynamic model developed by the U.S. Army

Corps of Engineers and Portland State University [29], mainly for rivers, estuaries, lakes and

reservoirs in the longitudinal or vertical direction.

We constructed a longitudinal and vertical two-dimensional water temperature model for

the whole reservoir area, and it ignored the variation in various variables along the width. The

Dongqing Reservoir was divided into 198 × 86 (longitudinal × vertical) rectangular cells, with

124 cells for the main reservoir and 74 cells for the branch reservoir. The longitudinal size of

the cell grid was 10–500 m, and the vertical size was 1–2 m. The input boundary (S1 Fig)

included relative operation data (inflow, outflow, inflow water temperature and water level)

and meteorological data (including air temperature, solar radiation, humidity, wind speed,

cloud and wind direction). The temperature field at the initial moment was obtained after

interpolation based on the vertical water temperature measured in the reservoir area on Janu-

ary 1, 2017. To explore the effect of the retaining wall on the thermal state of the reservoir area

and the improvement in the low discharged water temperature, we use a numerical model to

simulate the water temperature and hydrodynamics under two conditions with and without a

retaining wall. The condition with the retaining wall is defined as Case 1, while the condition

without the retaining wall is defined as Case 2.

2.3 Index of thermal stratification and statistics analysis

We selected indicators to quantify the thermal stratification of water bodies and evaluate the

characteristics of thermal structure of stratification. The vertical water temperature gradient

(VTG, ˚C/m; 0.12˚C/m was defined as the threshold of strong stratification here (Fig 2) [32]

and the buoyancy frequency (N, 1/s) [33] was calculated based on the water temperature pro-

files of the vertical section in front of the dam.

VTG ¼
@TðzÞ
@z

ð1Þ

N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
g
r0

@rðzÞ
@z

s

ð2Þ

where T(z) is the water temperature at depth z, ˚C; ρ(z) is the density at depth z, kg/m3; ρ0 is

the average density of the whole water column, kg/m3; g is the acceleration of gravity, m/s2;

and N is an important indicator used in limnology, oceanography and human-made reser-

voirs. The change trend of N can be used to evaluate the stratified stability of water columns. N

indicates that in a stable temperature-stratified structure, the fluid particles move in the verti-

cal direction after being disturbed. The combined effect of gravity and buoyancy always

returns these factors to an equilibrium position, which oscillates due to inertia. The oscillation

frequency can be understood as the exchange rate of water.

To better evaluate the changes in the stratification stability of the water column, the SI

index, which reflects the stability of the deep water body, was used to evaluate the strength of

the stratification stability of the reservoir [34].

SI ¼
XZ¼Z1

Z¼Z0

ðZ � �ZÞrZ ð3Þ

where Z is the depth of the water column from the surface; Z0, Zl and �Z are the depths of the

surface water, the lower end of the water column, and the centroid of the water column,
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respectively; and ρz is the water density at depth Z. SI can be converted into energy by multi-

plying by the acceleration of gravity and the volume of each layer, and SI represents the ideal

energy estimate of the entire water column to achieve mixing in the depth range without an

increase or decrease in heat.

We used the root mean square error (RMSE) and mean absolute error (MAE) to evaluate

the goodness of the fitted temperature curve, as well as the differences between the observed

and simulated temperatures. A paired T-test was conducted to determine the significance lev-

els of the differences in the (a) water temperature structure and (b) stratification stability index

between two different withdrawal conditions. A value of P<0.01 was defined as significant.

Moreover, the correlation coefficient R2 was employed to assess the goodness of fit between

the measured and simulated values of discharge water temperature with the retaining wall.

The closer R2 is to 1, the stronger the data correlation and the higher the simulation accuracy

is.

Fig 2. Comparison of simulated and observed values of vertical temperature distribution. The line represents the

calculated values, while the dots represent the measured values.

https://doi.org/10.1371/journal.pone.0260779.g002
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3. Results and discussion

3.1 Model calibration and validation

The calibration of Dongqing Reservoir’s CE-QUAL-W2 model focused on several critical coef-

ficients that had the greatest influence on the simulated temperature profiles upstream of the

dam. The critical model parameters are the longitudinal eddy viscosity coefficient, longitudinal

eddy diffusion coefficient, wind shielding coefficient, extinction for pure water, solar radiation

absorbed in the surface layer and dynamic shading coefficient (Table 1). The calibration and

value of these parameters referred to previous research [32,35,36].

We compared the calculated results and measured data for upstream of the dam (Fig 2) and

outflow temperature (Fig 3) based on hydrological and meteorological data from January to

September 15, 2017, which were obtained from the monitoring of the upstream and down-

stream power station of the Dongqing Reservoir and the meteorological website (http://www.

cma.gov.cn/2011qxfw/2011qsjgx/), respectively. The temperature variation trends of the epi-

limnion and metalimnion were consistent, and the temperature of the hypolimnion was gener-

ally well matched. The average MAE and RMSE of the vertical water temperature in front of

the dam from January to September were 0.46˚C and 0.62˚C, respectively. This was mainly

because the meteorological data originated from the Zhenfeng Meteorological Station. The sta-

tion was approximately 40 km away from the dam site whose wind speed and direction devi-

ated from the wind conditions in the open area of the reservoir area. Although we calibrated

the wind shielding coefficient to be 1.0, there may still be a certain deviation in wind direction

and speed. However, these errors are within a reasonable range, with relative errors of 4.4%

and 3.5% in July and August, respectively.

Table 1. Calibrated parameters in the CE-QUAL-W2 model of the Dongqing reservoir.

Parameter Unit Value

Longitudinal eddy viscosity m2/s 1

Longitudinal eddy diffusivity m2/s 1

Wind sheltering coefficient - 1

Extinction for pure water m-1 0.5

Solar radiation absorbed in the surface layer - 0.65

Dynamic shading coefficient - 1

https://doi.org/10.1371/journal.pone.0260779.t001

Fig 3. Comparison of simulated and observed values of outflow temperature. The line represents the calculated values, while the dots represent the measured

values.

https://doi.org/10.1371/journal.pone.0260779.g003
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The scatter plot of the measured and calculated outflow temperatures (Fig 3) showed that

the degree of dispersion of the error was small with an MAE of 0.23˚C and RMSE of 0.3˚C.

The determination coefficient between the measured value and calculated value was 0.9917.

The results showed that the model can accurately simulate the effects of buoyancy flow and

atmospheric heat exchange on the thermal structure of water temperature.

3.2 Effect of a retaining wall on thermal stratification

3.2.1 Temperature profiles in different cases. Fig 4 compares the vertical water tempera-

ture distribution in front of the dam with or without an FRW from January to September

2017. The results showed consistent seasonal variation characteristics under both conditions.

Stratification began during the warming period (April). Until the high-temperature period

(August), the maximum temperature difference between the surface layer (epilimnion) and

bottom layer (hypolimnion) increased to 11˚C. A double thermocline structure existed simul-

taneously because of a larger inflow discharge, whose temperature was lower than that of the

epilimnion and dived along the reservoir into the layer with the same density, forming a hori-

zontal intrusion flow. The initial momentum of inflow during the submersion process was

large, leading to severe turbulent diffusion and a strong mixing effect, thus forming an isother-

mal layer with a certain thickness and the middle thermocline.

The stratification structure under the two cases differed greatly for different withdrawal

modes, mainly in the stratification period (Fig 4, paired T-test: P < 0.01, April to September).

With the development of stratification, the water temperature isoline gradually extended to

the bottom owing to the increasing air temperature and heat storage (Fig 6A and 6D), and in

case 2, it extended much earlier to the bottom. The average vertical temperature of the whole

profile varied from 16.1˚C to 28.3˚C in case 1, while that of case 2 ranged from 16.2˚C to 34˚C.

This is because deeper low-temperature water was discharged leading to more heat storage

capacity when there was no FRW. The thickness of the thermocline in case 1 was 8 m-16 m

smaller than that in case 2, and the thickness of the hypolimnion exhibited the opposite trend

(8 m-14.5 m). For example, during the double thermocline period in August, the depth of the

middle isothermal layer in case 1 was 12 m higher than that in case 2 owing to the lower water

temperature in the epilimnion and thermocline resulting in a smaller diving depth of the

inflow. The thickness of the hypolimnion was 58 m in case 1 and 50 m in case 2.

3.2.2 Thermal stratification strength characteristics. Selective withdrawal can change

the thermal stratification intensity of reservoirs [37]. We can see from Fig 4 that the variation

rule in N was consistent with the VTG, and the peak value of N is the location of the thermo-

cline (Fig 4). SN represents the overall buoyant flow strength of the water column. The larger

SN was, the greater the density stratification strength. Thus, the density stratification in case 2

was more intense than that in case 1. In August, SN was 0.724 and 0.921 in case 1 and 2,

respectively.

Fig 5 present the temperature contour, VTG and N variations upstream of Dongqing Dam

for the two cases over time. In April, the stratified flow developed initially with changes in

meteorological conditions and inflow conditions. From May to June, stratification strength-

ened. The water temperature at a depth of 10 m increased rapidly, and the density decreased.

Influenced by the buoyancy jacking effect, N varied from 0.02 s-1 to 0.08 s-1. From July to

August, the inflow of the reservoir increased (798 m3/s), and the solar radiation increased (186

W/m2 on average per month). In case 1, the main flow layer was located near 470 m, and N

increased from 0.02 s-1 to 0.067 s-1. The inflow mixed quickly within a range of 455 m to 465.5

m, forming an isothermal layer. Moreover, the epilimnion appeared with an N of 0.028 s-1.

The temperature of the hypolimnion remained stable and was no longer affected by the
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Fig 4. Temperature profiles at 1–2 m intervals simulated based on different cases and the corresponding buoyancy frequency (N) for the

entire water column during 2017. SN indicates the total stratification intensity.

https://doi.org/10.1371/journal.pone.0260779.g004
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turbulence caused by the FRW. The water column presented a density stratified flow state

between layers. Comparatively, in case 2, the mean plug flow was located near 458 m with N of

0.02 s-1. The depth of the middle thermocline decreased significantly, and the surface water

was supported by buoyancy, while the hypolimnion was compressed to below 420 m asl.

Fig 6 compares the daily variation in SI in two cases (kg/m2). Their annual variation trends

of reservoir SI were similar, with averages of 402 kg/m2 (case 1) and 516 kg/m2 (case 2). As the

temperature rose, the stratification intensity continued to increase. Stratification of the water

column gradually strengthened from weak stratification to stable stratification. The SI value

Fig 6. Variation in reservoir SI from January to September 2017 in different cases.

https://doi.org/10.1371/journal.pone.0260779.g006

Fig 5. From January 1 to September 15, 2017, the contour profile of the cross section (B1) 0.9 km upstream of Dongqing Dam for two conditions (a-c for case 1 and d-f

for case 2) and (a, d) water temperature contour, (b, e) vertical temperature gradient and (c, f) buoyancy frequency.

https://doi.org/10.1371/journal.pone.0260779.g005
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was significantly distinct in the two cases (p<0.01). In case 1, the temperature of the epilim-

nion was lower and the maximum temperature difference between the epilimnion and hypo-

limnion decreased. The ability to resist heat convection, surface wind stress and density

convection caused by low-temperature inflow was relatively weaker, so the water column sta-

bility was weaker. With the arrival of high temperatures in the flood season, the replacement of

water bodies was accelerated, while stratification was not weakened. The SI difference between

the two cases reached a maximum in July, with an average difference of 522 kg/m2. This was

because of the sudden increase in flow in July and the weaker stratification stability in case 1,

resulting in more intense mixing than in case 2.

3.3 Influence of the retaining wall on outflow temperature

3.3.1 Variations in outflow temperature. In subtropical reservoirs in China, many

warm-water fish (such as four major Chinese carps) are quite sensitive to outflow temperature

in summer and autumn [38], and the discharged low-temperature water affects the spawning,

reproduction and migration of fish. The discharged water temperature is related to the vertical

temperature distribution of predams, the flow velocity near the water intake, and the flow [39].

A comparison of discharge water temperature under different working conditions is shown in

Fig 7. The FRW has an obvious influence on the outflow temperature (p<0.01). Compared

with the natural water temperature of the dam site, the discharge water temperature was lower

in the two cases from March to September, while the degree of low-temperature water was

weakened in case 1. Due to the effect of the FRW, the discharged water temperature from

March to June increased by 0.1˚C~1.0˚C. The maximum difference appeared in May (1˚C).

Due to the effect of meteorological conditions, the water temperature near the top elevation of

the FRW (470 m asl) increased rapidly while the mixing caused by thermal convection did not

move down to the vicinity of 455 m asl. The difference in water temperature near these two

elevations reached the largest value. August was the double thermocline period, and the middle

isothermal layer where the interlayer flow was located was near 455 m asl. There was no signif-

icant temperature difference between the middle isothermal layer in case 2 and the upper ther-

mocline in case 1, so the outflow low-temperature water only improved by 0.3˚C. In general,

the FRW mitigated the influence of low-temperature water in spring and summer at Dongqing

Hydropower Station.

Fig 7. Released water temperatures in different cases.

https://doi.org/10.1371/journal.pone.0260779.g007
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3.3.2 Flow velocity distribution. The flow velocity distribution is an essential indicator of

the hydrodynamic characteristics, and it is usually characterized by the maximum flow velocity

and its position. In this paper, to examine the velocity distribution to analyze the withdrawal

properties, we selected April in the heating period, July in the high-temperature period and

September in the cooling period to explore the flow velocity changes in different periods

caused by the FRW (Fig 8).

Fig 8. Elevations of the withdrawal layer in different months and different working conditions and the local flow field distribution in front of the dam in April, July and

September: a, c and e show the flow field with the retaining walls, and b, d and f show the flow field without retaining walls.

https://doi.org/10.1371/journal.pone.0260779.g008
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In Fig 8A~8F, the results showed that the FRW raised the withdrawal elevation by 16m on

average. The withdrawal elevation ranged from 472.5 m to 479 m asl with the FRW and ranged

from 455~462 m asl with no-FRW. The FRW hindered access to water bodies below 470 m asl,

allowing water bodies above 470 m asl to flow into the water intake. In case 2, the water flowed

smoothly into the water intake while the flow pattern near the top of the FRW was more com-

plex in case 1. The position of the water withdrawal layer was elevated to a warmer layer with a

higher temperature, leading to more warm water release and more heat loss, which further

changed the vertical water temperature structure in front of the dam (Fig 5) and lowered the

upper water temperature. For example, in July, when the flow reached its peak and the increas-

ing amplitude of the withdrawal elevation was at the minimum (14.5 m), the water tempera-

ture of the 477 m withdrawal layer in case 1 was 21.1˚C, which was lower (1.3˚C) than that in

case 2. Therefore, the discharge water temperature only increased by 0.1˚C.

The layer with the maximum flow rate is recognized as the mean plug layer. In case 2, the

quantity of water taken from the upper and lower layers of the mean plug layer was relatively

even while the opposite was observed in case 1. In case 1, more water was taken from the

upper layer, and the mean plug layer was compressed, which increased the maximum velocity.

For example, in April, the center elevation of the mean plug layer with an FRW was 15 m

higher than that without an FRW. The maximum velocities in case 1 and case 2 were 0.063 m/

s and 0.055 m/s, and the thicknesses of the mean plug layer were 30 m and 35 m, respectively;

in July, the flow reached the maximum, the velocities also increased to 0.146 m/s and 0.101 m/

s, and the thicknesses of the withdrawal layer were 33 m and 39.5 m for cases 1 and 2, respec-

tively. The release of warm water from the upper layer intensified as the flow rate increased.

3.3.3 Equivalent withdrawal elevation. The discharged water temperature is closely

related to the vertical water temperature profile in front of the dam and the water withdrawal

elevation [40,41]. Generally, when the stratification in front of the dam is obvious and the ele-

vation of water intake is high, the discharged water temperature is high. To more intuitively

express and analyze the position difference in the withdrawal layer, the equivalent withdrawal

elevation is defined in this study as the elevation of the withdrawal layer corresponding to the

same water temperature in front of the dam. The results show that the corresponding distribu-

tions of the water temperature and temperature gradient at equivalent elevations in the two

cases are shown in Fig 9. From the distribution of the equivalent elevation, we can see the

Fig 9. Position of the equivalent elevation point in the water level-water temperature and water level-temperature gradient distribution diagram. a and b are the

water temperature and VTG distribution diagram with a retaining wall, respectively, while c and d are the water temperature and VTG distribution diagram without a

retaining wall, respectively. The red dotted line represents the position of the top elevation of the retaining wall, and the blue scattered points represent the equivalent

elevation point.

https://doi.org/10.1371/journal.pone.0260779.g009
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location of the withdrawal layer. The red line in the figure is the top elevation of the retaining

wall while the blue spots represent the equivalent elevation points.

When there is an FRW, the withdrawal layer is above the retaining wall (near 470 m), while

the withdrawal layer is below the intake (near 455 m) without an FRW. In July, since the inflow

and outflow were large, the turbulence near the intake was intense, and the position of the

withdrawal layer increased accordingly. In the two cases, the equivalent elevation points were

all located at the bottom of the thermocline because the density gradient of the layer adjacent

to the thermocline boundary was larger and the buoyancy effect was stronger than that of

other layers (Fig 9C and 9D). The vertical mixing caused by density convection and turbulent

diffusion was suppressed, and the downward transfer of surface energy was hindered at the

boundary of the thermocline. The discharged water temperature was closely related to the

water withdrawal elevation, so it was an effective means to improve the outflow temperature

by first increasing the water withdrawal elevation. Second, the mixing of the upper warm

water layer is strengthened to reduce the temperature difference in the thermocline layer, thus

weakening the inhibitory effect of buoyancy.

3.4 Engineering applications and prospects for this study

As a new type of selective withdrawal facility, what makes front retaining walls mainly differ

from other selective withdrawal facilities is that the fixing the FRW elevation makes it unneces-

sary for additional manual operation [42], which can provide a new idea for the adaptive water

temperature management of run-off reservoirs with a relatively low amplitude. Generally, the

water level of reservoirs with different operations varies greatly. The stoplog gate and tempera-

ture-control curtain can be lifted or lowered to adjust the water temperature with the water

level changing [35,43–45]. However, the water level in run-off reservoirs varies less. No fre-

quent manual operation is required to obtain the same outflow temperature. Therefore, the

FRW is more suitable for this kind of reservoir.

Second, this study shows that the improvement effect of the outflow temperature with the

FRW is good. For example, the water level of the Dongqing reservoir ranges from 484m to

490m. The lowest elevation of the mean plug flow is 472.5 m (June, Fig 8) near the upper ther-

mocline, causing that the upper high-temperature water body can be continuously obtained.

The maximum improvement of discharged water temperature can reach 1˚C, which has a

good improvement effect in engineering management. From the aspect of engineering, FRWs

are achieved with a small investment and have simple operation conditions and good con-

struction conditions, which can provide a reference for the selection of stratified water intake

measures.

At present, when various selective withdrawal facilities are applied, such as stoplog gates

and temperature-control curtains, it is necessary to initially determine the period for dis-

charged low-temperature water initially. The withdrawal elevation determines the elevation

conversion of the water intake. As the water level is below the submerged depth of the water

intake, the intake is switched from high to low, which usually results in a sudden decrease in

the outflow temperature [46]. The water temperature after lowering is lower than that without

selective withdrawal facilities. Such a low temperature often causes much more severe impacts

on downstream ecosystems and agricultural irrigation. Due to the fixed elevation of the front

retaining wall, we can continuously obtain upper layer warm water, which will not result in

sudden low-temperature water. The front retaining wall is set at a certain distance in front of

the dam, so compared with the fixed intake, the head loss is relatively small, and the influence

on power generation efficiency is small.
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4. Conclusions

FRWs are a new and effective method to regulate the outflow temperature. To strengthen

research on FRWs, this paper numerically investigated the effect of FRWs on the thermal

structure in the deep Dongqing Reservoir and evaluated the potential function of FRWs in

water environment management. The conclusions are described as follows:

1. The retaining wall significantly changed the water temperature distribution structure and

reduced the thermal stability strength of the reservoir during stratification. The retaining

wall increased the thickness of the thermocline layer to further restrain the downward

transfer of heat. Simultaneously, the water temperature and the thickness of the upper

warmer water layer were reduced. The stratification strength of the thermocline layer also

decreased. SN was less than that without retaining walls, and SI was also relatively lower

with a maximum difference of 522 kg/m2 (July).

2. The retaining wall can increase the discharge water temperature during stratification by

0.4˚C on average and reaching the maximum (1˚C) in May. Specifically, in the period of

the double thermocline (July and August), the discharge temperature only increased by

0.2˚C on average. The location of the mean plug layer ranged from 472.5 m to 479 m asl

with the FRW and ranged from 455 m~462 m asl with no FRW. The equivalent withdrawal

elevation points were distributed at the bottom of the thermocline. If the discharged water

temperature rises, the water intake elevation can be lifted to reduce the temperature differ-

ence in the thermocline and weaken the inhibiting effect of buoyancy.

3. Retaining walls are more suitable for stratified deep run-off reservoirs with stable water lev-

els without frequent manual operation. The upper warmer water can be continuously

obtained, and the outflow water temperature will not suddenly decrease, resulting in more

severe impacts on downstream ecosystems and agricultural irrigation during stratification.

Moreover, front retaining walls have the advantages of low investment, high safety perfor-

mance and good construction conditions, so they can be applied to the water temperature

management of reservoirs and provide a reference for reservoirs with similar hydraulic

conditions.
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