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ABSTRACT 
 

Developing scientific practices and procedures for finding the characteristics of various crude oils 
from different geological sources based on fluorescence spectra fingerprints would be beneficial to 
the petroleum industry. Laser-Induced Fluorescence (LIF) has gained relevance worldwide 
because of its advantages in crude oil analysis. Presently, the use of this technique in the 
characterization of crude oils from the oil fields in Ghana has not been studied. The study 
employed the LIF technique to determine some physical qualities of crude oils from Jubilee Oil 
Field, Tweneboa Enyenra Ntomme (TEN) Oil Field and Saltpond Oil Field. Specifically, this study 
used multivariate analysis methods to link the spectral signatures of the crude oils to their 
properties for identification and classification. The LIF technique was applied on four crude oil 
samples. Fluorescence spectra were obtained using a continuous wave 405.0 nm laser. The 
excitation source revealed five (5) peak wavelengths after deconvolution. Using Principal 
Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Hierarchical Cluster Analysis 
(HCA), the crude oil samples were classified accurately. 
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1. INTRODUCTION 
 
Crude oil is made up of mainly organic carbon 
(85-87%) and hydrogen compounds (12-14%) [1] 
with different complex mixes such as 
naphthenes, methane, butane, paraffin and other 
aromatic hydrocarbons. Based on its hydrogen 
predominance, crude oil can be categorized as a 
naphthenic base, intermediate base or paraffin 
base. These natural oils are found in different 
parts of the world and can be obtained from an 
extensive range of geological sources. The 
Sedimentary rocks of the oil fields are of unique 
geological composition and, therefore, the need 
to identify their physical characteristics [2,1]. 
Crude oil analysis is essential for 
characterization and standardization in the 
petroleum industry. Therefore, an interesting 
area that calls for research with efficient 
techniques to provide essential information on 
the geochemical qualities of crude oils. Studies 
have shown that chemical methods such as the 
Grote-Krekeler, Herman, Mortiz and other 
methods may be used to determine the quality of 
crude oil [3]. They require several hours of 
heating the samples to temperatures as high as 
750.0 ℃  to obtain results. These methods are 
destructive to the sample and involve more than 
one process, making it tedious [4]. Simplicity in 
analyzing samples in optical spectroscopic 
methods, such as Laser-Induced Fluorescence 
(LIF), is very rapid and it provides quality 
assurance results. LIF method of spectral 
analysis prevents unavoidable impurity additions 
to samples as compared to chemical wet 
methods of analysis. LIF has aided new 
development and approaches to determine the 
physicochemical properties of crude petroleum 
and its products. This spectroscopic technique 
has unique diagnostic potential and has gained 
relevance in crude oil analysis. Laser-Induced 
Fluorescence (LIF) is one of the most widely 
utilized non-destructive spectroscopic techniques 
in petroleum technology for possible spectral 
measurements and analysis [5]. It offers rapid 
response, high sensitivity and selectivity, and 
contain valuable information related to the 
intrinsic physicochemical characteristics of each 
examined sample. In this technique, sample 
preparation is nondestructive and spectral line 
interference is relatively uncommon (El-Hussein 
et al., 2015). LIF is another method of 
fluorescence spectral profile that can be used to 
develop a standard wavelength fingerprint for 
light and heavy crude oils [5,6]. 

Other researchers have utilized LIF to predict 
crude oil quality based on their fluorescence 
emission spectra profiles (El-Hussein et al., 
2015). Bujewski and Rutherford used a rapid 
optical screening tool coupled with LIF to 
ascertain the physicochemical characteristics of 
petroleum contamination at toxic waste sites. 
Also, Takumi et al, demonstrated the applicability 
of Time-Resolved Laser-Induced Fluorescence 
(TRLIF) in detecting metal ions in petroleum 
products, soil and contaminated seawater 
samples (Takumi et al., 2012; Collins et al., 
2011).  
 
The main objective of this study was to use LIF 
to characterize the crude oil samples by 
determining the fingerprint spectral qualities of 
crude oils from Jubilee Oil Field, TEN Oil Field 
and Saltpond Oil Field of Ghana. Specifically, 
multivariate analysis methods were used to link 
the spectral signatures of the crude oils to predict 
their properties, identify and classify them. The 
use of the LIF technique for the determination of 
some physical properties of crude oils from the 
active oil fields in Ghana would provide valuable 
information to the petroleum stakeholders for 
quality assessment. Therefore, there is the need 
to use this non-destructive technique to study 
these crude oils from Ghana. 
 

2. LITERATURE REVIEW 
 
The fundamental study of interactions of 
radiation with matter has become an enthralling 
developing research area in the petroleum 
industry. A thorough understanding of the 
sulphur content using fluorescence techniques 
can, therefore, not be underestimated [7]. The 
recent discovery of crude oil across several 
regions in Ghana has awoken a growing 
attentiveness to research in the petroleum 
industry. Therefore, a research work to estimate 
the concentration of elements in crude oil and 
hence the sedimentary rock of various oil fields in 
Ghana for standardization of crude petroleum 
and its products in Ghana is very important.  
 

2.1 Crude Oil Formation 
 
When animals and micro-organisms die and 
settle to sedimentary rock after a very long 
period, several layers of mud cover them. With 
changes in heat and pressure over a long period, 
these layers are converted to kerogens which are 



 
 
 
 

Gafrey et al.; PSIJ, 25(6): 8-20, 2021; Article no.PSIJ.74353 
 

 

 
10 

 

estimated to be about 1016 tons of carbon. It is 
the most abundant content of living matter by 
10,000-fold (Evdokimov & Losev, 2007). Due to 
heat and pressure, the kerogens are cracked to 
form crude oil which may migrate from one layer 
to another till it is trapped by a cap rock that is 
neither porous nor permeable, hence called the 
source rock (Ante, 2013).  
 
Crude oil is made up of mainly organic carbon 
(85 – 87 %) and hydrogen compounds (12 – 14 
%) with different complex mixes such as 
naphthenes, methane, butane, paraffin and other 
aromatic hydrocarbons (Evdokimov & Losev, 
2007). Petroleum is categorized as a naphthenic 
base, intermediate base or paraffin base 
depending on its hydrogen predominance. 
Tables 1 shows detailed information about the 
hydrocarbon and non-hydrocarbon composition 
of petroleum. 
 

2.2 Non-Hydrocarbons 

 
Information on crude oil composition has 
increased based on the recent development of 
apparatus and techniques. Not only scientists are 
able to ascertain the group of hydrocarbon 
structures in crude oil but also the whole make-
up of the hydrocarbons and their respective 
structures (Hook, 2009). Examples of these new 
techniques include Laser-Induced Fluorescence, 
nuclear magnetic and paramagnetic resonances 
and X-ray fluorescence-based methods (Qasim, 
2016). Contents of the trace elements in crude oil 
differ significantly, hence the upsurge in trace 
element studies by researchers across the global 
frontier (Hook, 2009). The discovery and 
recovery of trace elements from crude oil are 
technically complex and has not been regularly 
used, although scientific experimentation is in 
progress (UNEP/PCFV, 2009). Table 2 shows 
the elemental percentage composition range by 
weight in crude oil.  

The physical and chemical properties of any 
given hydrocarbon species do not only depend 
on the number of carbon atoms present in the 
molecule but also the nature and type of 
chemistry existing between them (Abdalla, 2015). 
The different proportions of the vast hydrocarbon 
class and distribution determine the yield and 
quality of refined petroleum products. Also, the 
percentage composition of single and other multi-
elements may influence crude oil and its 
products. The market price evaluation of crude 
oils varies according to the prevailing accepted 
standards (Appenteng et al., 2013). The 
classification of crude oil into light and heavier 
grades is used to determine yield quality since 
lighter grades produce quality yields than heavier 
grades. The heavier have to undergo the process 
of carbon removal and hydrogen addition through 
catalytic cracking units (Abdalla, 2015). 
Petroleum quality is linked to the concentration of 
sulphur present in it. The API gravity of crude oil 
plays a major role in determining its value on the 
world market. High API gravity oils command 
higher prices globally. Crude oil with low sulphur 
content crude oils is rated as sweet crude. 
Sulphur concentrations differ around 0.1% to 
0.5% for sweet and 1% to 3.3% for sour crude 
(UNEP/PCFV, 2009). In the refinery process, 
heavy and sour crude oils require relatively much 
energy, time and maintenance cost than light and 
sweet crude oils.  

 

3. MATERIALS AND METHODS 
 

3.1 Crude Oil Sample  
 

Four different composite run-down petroleum 
crude oil samples were obtained from Jubilee Oil 
Field, TEN Oil Field and Saltpond Oil Fields from 
the Research and Development Department of 
Ghana National Petroleum Corporation (GNPC).  
Table 3 summarizes the crude oil samples, oil 
field locations and sample codes used in this 
study. 

 

Table 1. Non-Hydrocarbon Composition of Petroleum (Hook, 2009) 
 

Non-Hydrocarbons Products Observations  

Compounds of sulphur  Hydrogen 
Sulphide 

Unwanted due to foul odour  
(0.5 % to 7%) 

Compounds of Nitrogen Quinotine 
Pyridine 
 
Pyrrole 
Indole  

After exposure to sunlight, the presence of nitrogen 
compounds in gasoline and kerosene degrades the 
colour of the fuel.  
Gum formation can be caused by them. 
Less than 0.2 %, usually.  

Compounds of Oxygen Naphthenic 
acids, Phenols 

At different stages of manufacturing, these acids cause 
corrosion and contamination issues. Traces of 
materials are up to about 2 % 
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Table 2. Elemental Percentage Range: (Bawazeer & Zilouchian, 1997) 
 

Element  Composition (wt %) 

Carbon  38.0 – 87.0  
Hydrogen  10.0 – 14.0  
Nitrogen  0.1 – 0.2 
Oxygen  0.05 - 1.5  
Sulphur  0.05 – 6.0  
Metals  < 0.1   

 
Table 3. Summary of the Crude Oil samples, Oil Field Locations and sample Codes used 

 

Crude Oil Sample Oilfield/Drilling Sample Code 

FPSO MV21 Kwame Nkrumah Jubilee JF 
FPSO MV25 Atta Mills Tweneboa Enyenra Ntomme TF 
Saltpond Well 2 Saltpond SF-1 
Saltpond Well 4 Saltpond SF-2 

 

3.2 Experimental Setup 
 
The spectral analytical setup consists of a 
radiation source, an analyte and a detection 
system. The radiation source is a continuous-
wave diode laser with 100.0 mW  maximum 
output power emitting at a wavelength of 405.0 
nm. It is equipped with a laser diode driver (TTL 
modulation of 0 to 20.0 kHz) requiring an output 
voltage of 12.0 V at 2.0 A. Also, bifurcated optical 
fibre-probe with a core diameter of 600.0 μm 
(Ocean Optics, U.S.A) was connected to the fibre 
port micro-positioner (PAF-SMA-5B, Thorlabs, 
U.S.A) which directed the beam out of the 
microscope objective lens (CP09/M, Thorlabs, 
U.S.A). 

 
The detection system comprises CCD-based 
USB2000 spectrometer (USB2000 Ocean 
Optics, U.S.A) and 450.0 nm cut-off long-pass 
filter. It operates on low power characteristics of 
100.0 mA at 5.0 V and sensitive to photon activity 
within the range of 200.0 nm to 1100.0 nm. Data 
from the charged coupled detector (CCD) is 
acquired by choosing from 1.0 ms to 60.0 ms as 
integration time. The collected data is converted 
to electric pulses and passed to the 001Base32 
spectrometer on the PC for visualization. 

 
3.3 Fluorescence Measurement  
 
Laser-Induced Fluorescence measurements of 
the four crude oil samples were taken at LAFOC, 
Department of Physics, University of Cape 
Coast. The 405.0 nm CW diode laser was 
incident on each sample. The emitted 
fluorescence was detected and transmitted 
through an optical fibre with a long-pass filter 

connected to a USB2000 spectrometer (Ocean 
Optics, U.S.A). The fibre was positioned behind a 
converging lens 90 degrees from the sample, 
and the spectrum was displayed on a computer 
screen. After the desired spectrum was acquired, 
the intensity and wavelength data of that 
spectrum were exported from the 001Base32 
software into MATLAB version R2019a 
(MathWorks Inc., U.S.A) for further processing to 
obtain the fluorescence spectra.  
 

3.4 Data Analysis 
 
The fluorescence spectrum of each sample was 
deconvolved to extract information about the 
hidden peaks contributing to the entire spectrum. 
Two unsupervised pattern recognition 
techniques, Principal Component Analysis (PCA) 
and Hierarchical Cluster Analysis (HCA) were 
used to determine the differences in the four 
crude oil samples used. The score plot of the 
PCA was used as input variables to generate a 
Linear Discriminant Analysis (LDA) model using 
the principal components (PC1 and PC2) for the 
identification and classification of the crude oil 
samples. Six hundred (600) LIF spectra were 
obtained from the four crude oil samples 
measured from four different oil wells. Four 
hundred (400) of the LIF spectra representing 
66.67 % of the entire LIF spectra obtained were 
used for the training set. Two hundred (200) of 
the remaining LIF spectra representing 33.33 % 
of the total spectra were used for the verification 
set. 
 

3.5 Data Pre-processing Method 
 

The fluorescence spectra data were pre-
processed using maximum normalization to get 
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all the data on the same scale [8]. Maximum 
normalization involved dividing each 
fluorescence spectra by its maximum value 
instead of its average (Ozaki et al., 2006). This 
technique was employed to remove the 
undesired spectral variations resulting from the 
light interaction with the samples, the rigidity of 
the environment and noise from the detector 
[9,8]. The entire spectrum was subjected to the 
maximum normalization technique to obtain the 
mean and normalized fluorescence spectra for 
the four crude oil samples.  

 

3.6 Peak Deconvolution 

 

Fluorescence was made up of bands 
representing the constituents of the samples, and 
these bands cover ranges wavelength. When the 
bands are very broad, they end up overlapping 
and tend to be closer to each other hence the 
need to deconvolve the spectra (Subhash & 
Mohanan, 1995). Peak deconvolution can be 
described as the process of decomposing peaks 
that overlap with each other and extracting 
information about the hidden peaks depending 
on the existence of the baseline [10]. The 
procedure was implemented using the PeakFit 
software (PeakFit, Seasolve, Version 4.12) with 
the fluorescence spectra data as input points.  

 

3.7 Principal Component Analysis (PCA) 
 

Principal Component Analysis (PCA) is an 
exploratory and unsupervised pattern recognition 
statistical method used to divulge hidden 
structures within large data sets [11]. PCA 
decreases the data set by plotting each 
fluorescence spectrum as a single point in PC 
space, based on the variations across the entire 
data set [12]. It presents a visual illustration of 
the correlation between sample and variables 
and gives insight into how measured variables 
cause samples to vary or show similarities 
among each other. For more information, refer to 
these authors [13,14]. 

 

3.8 Linear Discriminant Analysis (LDA) 
 

Linear Discriminant Analysis (LDA), also called 
Fisher’s linear discriminant or mapping is used 
for dimension reduction. LDA works by finding 
the linear combination of features that spell out 
the precise ratio of between-class variance and 
reduces the ratio of within-class variance 
[15,16,17]. 

3.9 Hierarchical Cluster Analysis (HCA) 
 
Hierarchical Cluster Analysis (HCA) is another 
unsupervised pattern recognition technique that 
identifies groups or clusters of data due to 
measuring the proximity between the elements. 
Data groups can be defined based on similarity 
and dissimilarity. 
 

4. RESULTS AND DISCUSSION 
 
4.1 Fluorescence Emission 
 
Unprocessed laser-induced fluorescence (LIF) 
spectra obtained from each of the four samples, 
JF, TF, SF-1 and SF-2, are shown in Fig. 1. The 
fluorescence peaks are observed near 500.0 nm 
and 560.0 nm, with shoulder fluorescence 
emission peaking around 620.0 nm and 650.0 
nm. The fluorescence intensities for TF, SF-1 
and SF-2 crude oil samples appear to be closer 
to each other than the crude oil sample from JF 
[5].  

 
Fig. 2 shows the average normalized 
fluorescence spectra obtained for each of the 
four samples. The fluorescence spectra profile 
observed for TF, SF-1 and SF-2 crude oil 
samples in Fig. 2 fits the general characteristics 
of light oils with low specific gravities and lower 
fluorescence band intensities [5]. JF is 
characterized by a higher fluorescence band 
intensity, which implies that crude oil from JF is 
heavier than those from TF, SF-1 and SF-2 
[5,18,19]. 

 

4.2 Fluorescence Spectra Deconvolution 
 
Fig. 3 shows the deconvoluted fluorescence 
spectra of the crude oils from the four crude 
samples of the three oil fields. The deconvoluted 
fluorescence spectra of JF, TF, SF-1 and SF-2 
consisted of Gaussian components observed at 
different peak wavelengths and respective 
intensities. It can be observed that the significant 
fluorescence peaks occur within a range of 510.0 
– 750.0 nm. These fluorescence peaks are 
similar to other fluorescence emission results 
obtained for crude oils observed by other 
researchers [5,17], (Owens and Ryder, 2011; 
Schultze et al., 2004; Asiamah et al., 2013). The 
similarities in peak wavelengths for SF-1 and SF-
2 suggest that they possess the same 
fluorophores and could have the same molecular 
characteristics since they are both drilled within 
the same field. The peak wavelengths and 
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intensities of the deconvoluted fluorescence 
spectra of the crude oil samples from the four (4) 

oil wells JF, TF, SF-1 and SF-2 are shown in 
Table 4. 

 

 
 

Fig. 1. Unprocessed Relative Fluorescence Spectra of all the Crude Oil samples, JF, TF, SF-1 
and SF-2 from the four Oil fields showing the Dominating Spectral Signatures 

 

 
 

Fig. 2. Average Normalized Fluorescence Spectra from four Crude Oil samples from four (4) Oil 
Wells 
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(a) 

 

(b) 

 

(c) 
 

 

(d) 
 

 
 

Fig. 3. Deconvoluted Fluorescence Spectra of (a) JF, (b) TF (c) SF-1 and (d) SF-2 showing the 
Hidden Peaks 

 
Table 4. Results of Deconvoluted Fluorescence Spectra for Crude Oil samples from all four (4) 

Oil Wells 
 

                     JF TF SF-1 SF-2 

PEAKS 𝛌 (𝐧𝐦) 𝐈 (𝐚. 𝐮. ) 𝛌 (𝐧𝐦) 𝐈 (𝐚. 𝐮. ) 𝛌 (𝐧𝐦) 𝐈 (𝐚. 𝐮. ) 𝛌 (𝐧𝐦) 𝐈 (𝐚. 𝐮. ) 

1 508 2350 510 1576 511 1465 511 1438 
2 556 2257 560 1535 562 1557 562 1495 
3 604 1331 614 990 616 1107 616 1075 
4 645 623 670 404 675 479 675 468 
5 695 335 726 130 736 139 736 138 

 
The differences in the peak wavelengths suggest 
that the crude oil samples from the oil fields of 
Saltpond TEN and Jubilee have different 
fluorophore compositions and do not have the 
same molecular characteristics [5,17]. The 
average peak wavelength values of 

deconvoluted fluorescence spectra for crude oil 
samples from the three oil fields JF, TF, SF-1 
and SF-2 are shown in Table 5. These average 
peak wavelengths provide the standard 
deconvoluted peak wavelength ranging from 
510.0-750.0 nm. This determines the specific 
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peak wavelengths range at which fluorescence 
was occurring. The peak wavelengths also 
suggest that there are five (5) main different 
fluorophores responsible for fluorescence 
emission in the crude oil samples. 

 

4.3 Principal Component Analysis 
(PCA) of the Fluorescence Spectra 

 

Principal Component Analysis (PCA) was worth 
exploring to find the variations in the 
fluorescence spectra to allow for more insight 
into the difference between JF, TF, SF-1 and SF-
2. The PCA simplified the large data set obtained 
from the fluorescence measurements by 
reducing the dimensionality, extracting the 
principal component coefficients and the 
eigenvalues of the covariance matrix of the data. 
Each spectrum was then plotted as a single point 
in PC space based on the variance across the 
entire data set. 
 

Fig. 4 shows the screen plot containing the 
eigenvalues of the covariance matrix of the 
fluorescence spectra from the crude oil samples. 
It determines the number of factors to retain in 
the exploratory analysis (EA). 

 

It has been suggested that the point where the 
screen plot levels off and flattens is where the 
best possible principal components (PCs) can 
end [20,21,22]. And also, may predict the amount 
of explained variance of the eigenvalue (Zhao et 
al., 2016). So, two PCs were selected to 
represent the real data. The two PCs (PC1 and 
PC2) preserved the maximum variance in the 
fluorescence spectra. Out of 99.97 % 
discrepancy in the fluorescence spectra, PC1 
contributed 99.59 % and PC2 0.38 %.  
 

The loadings or coefficient plot is shown in Fig. 5. 
It is made up of the coefficients of the principal 
component. The rows of the principal 
components correspond to the wavelengths, 
whiles the columns correspond to the principal 
components. The loadings plot shows the 
regions where the differences and similarities 
between the fluorescence spectra can be 
observed within the 450.0 nm – 800.0 nm range. 
It also reflects the unique grouping of the four 
crude oil samples. This plot helps to apprehend 
the trend of the observations. From the plot, the 
significant differences in the fluorescence spectra 
are set to occur within the 470.0 – 570.0 nm 
range.  

Table 5. Average Peak Wavelength Values of Deconvoluted Fluorescence Saltpond (SF 1 & SF 
2) Oil Fields 

 

Peaks Wavelength (nm) 

1 510.00 ± 1.41 
2 560.00 ± 2.83 
3 612.50 ± 5.74 
4 666.50 ± 13.87 
5 723.25 ± 19.41 

Data behind ± for this work are standard deviations 
 

 
 

Fig. 4. Number of Principal Components and their Contribution to the Variation in Data Set 
Explained Percentagewise 
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Fig. 5. Loadings Plot from the PCA of the LIF Spectra giving information about the significant 

sources of Variation in the Data 
 

 
 

Fig. 6. Score with only two PCs Plot for PC1 and PC2 from Principal Component Analysis of 
the LIF Spectra Obtained from the Four Crude Oil Samples, JF, TF, SF-1 and SF-2 
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The score plot in Fig. 6 shows the clustering of 
the fluorescence spectra in PC space based on 
the two significant principal components selected 
and it gives the variance across the entire data 
set. Sample JF separated from TF and SF along 
PC1, which suggests that crude oil from JF is 
heavier than TF and SF. The negative loadings 
for PC2 show a trough, which explains the 
differences observed in the fluorescence spectra 
of JF, TF, SF-1 and SF-2 samples in the score 
plot. It is, therefore, feasible to report that, due to 
the different geological sources from which the 
crude oil samples were obtained, it was observed 
that crude oil composition varied from oil field to 
oil field. The PCA has shown that the crude oils 
from these four different oilfields can be 
discriminated against with only two PCs. 

 
4.4 Linear Discriminant Analysis (LDA) 
 
Fig. 7 shows the confusion matrix of the LIF 
spectra trained and test sets using the LDA 
model from the four crude oil samples. The 
confusion matrix provides a summary of what the 
discriminant function has done for each class. 
Each row shows the correct label, and each 
column shows one type of prediction. Two 
hundred (200) LIF spectra were used for the test 
set. The classification results for both trained and 

test sets were 100 % using the LDA. This means 
that there was no misclassification of the crude 
oil samples based on their LIF spectra. 
 

4.5 Hierarchical Cluster Analysis (HCA) 
of the Fluorescence Spectra 

 
Hierarchical Clustering Analysis (HCA) works by 
generating a data hierarchy leading to the 
formation of a dendrogram. Fig. 8 shows the 
dendrogram of the LIF spectra of the four crude 
oil samples from JF, TF, SF-1 and SF-2 oil wells. 
 
The cluster labelled I consist of SF-1, SF-2 and 
TF, while cluster II comprises JF. The HCA has 
been able to discriminate between the crude oil 
samples by calculating the linkage or Euclidean 
distance between JF, TF, SF-1 and SF-2 and 
classifying them into two major clusters. The 
shorter linkage distances observed in cluster 1 
suggest that TF and SF are lighter oils since they 
form under one cluster. Also, JF separates from 
the rest of the samples with a longer linkage 
distance, suggesting that JF could be heavier in 
molecular composition. The ability of the HCA to 
discriminate between the crude oil samples 
suggests that HCA can also be used to classify 
the crude oils from the three different oil fields. 

 
(a) 
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(b) 
 

 
 

Fig. 7. Confusion Matrix for the LIF (a) Trained Set and (b) Test Set of Crude Oil samples for 
the LDA Model 

 

 
 

Fig. 8. Dendrogram of the Laser-Induced Fluorescence Spectra of the four Crude Oil samples 
from JF, TF, and SF 

 

5. CONCLUSION 
 

This research has shown the potentials of LIF in 
combination with multivariate analysis for 

measurement, identification and classification of 
crude oil samples. PCA and HCA identified 
cluster trends in the spectra data and classified 
JF, TF, SF-1 and SF-2 according to their 
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geological locations based on the LIF spectra 
obtained. The results generated by the confusion 
matrix on both trained and test sets were 100 % 
using the LDA. There was no misclassification of 
the crude oil samples based on their LIF spectra. 
Therefore, LIF coupled with PCA, HCA and LDA 
was used as a fast and straightforward 
spectrochemical analytical method to 
characterize crude oil effectively. It is 
recommended that state-owned corporations, 
petroleum research institutes and laboratories 
adopt the use of the LIF technique to identify and 
classify petroleum oil samples because of its 
cost-efficient, simple design, rapid result and 
quality assurance outcome. The technique can 
also be used to detect adulteration of crude oils 
and other petroleum products in the petroleum 
manufacturing industries, thus making it an 
effective tool for quality assessment. 
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