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Abstract: In the near future, it is highly expected that smart grid (SG) utilities will replace existing
fixed pricing with dynamic pricing, such as time-of-use real-time tariff (ToU). In ToU, the price of
electricity varies throughout the whole day based on the respective utilities’ decisions. We classify
the whole day into two periods with very high and low probabilities of theft activities, termed as the
“theft window” and “non-theft window”, respectively. A “smart” malicious consumer can adjust
his/her theft to mostly targeting the theft window, manipulate actual usage reporting to outsmart
existing theft detectors, and achieve the goal of “paying reduced tariff”. Simulation results show
that existing schemes do not detect well such window-based theft activities conversely exploiting
ToU strategies. In this paper, we begin by introducing the core concept of window-based theft cases,
which is defined at the basis of ToU pricing as well as consumption usage. A modified extreme
gradient boosting (XGBoost) based machine learning (ML) technique called dynamic electricity theft
detector (DETD) has been presented to detect a new type of theft cases.

Keywords: AMI smart meter; theft detection; machine learning; XGBoost; time-of-use (ToU) pricing

1. Introduction

One of the upcoming features of load analytics in the smart grid (SG) is to analyze
overall load on the grid and determine dynamic pricing schemes so as to redistribute the
consumption load in a balanced way. Using advanced metering infrastructure (AMI) smart
meters, utilities are now capable of recording electricity usage on a much more frequent
basis (e.g., every 15 min) and enabling all consumers, who previously had bulk usage
meters, to be introduced to real-time pricing programs that better reflect differences in the
electricity cost. Furthermore, real-time pricing such as time-of-use (ToU) is more favorable
than existing fixed pricing from the perspective of efficient power scheduling, demand-side
management (DSM), and grid safety, such that existing fixed pricing is expected to be
replaced with real-time pricing in the near future [1]. ToU pricing can be either fixed
(f-ToU), where the price for each of the broad blocks of hours is predetermined or dynamic
(d-ToU), where the low, normal (or medium), and high price periods vary every day.
Studies have shown that such a dynamic rate program could greatly affect the electricity
usage pattern of consumers [2].

On the other hand, real-time pricing increases the need to detect and prevent malicious
consumers that tamper with the smart meter readings to steal electricity, with the primary
intention of paying a lower tariff while consuming the same or a higher amount of electricity
in the SG. This kind of tampering with the smart meter represents a major problem for
utility companies and is a part of non-technical loss (NTL). As we notice in the following
literature review, most of the existing schemes consider only energy consumption and
do not consider ToU pricing schemes or other external factors for NTL theft detection
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algorithms. This is the basis of the central idea of our paper to consider the ToU scheme
for smarter theft detection. In this paper, we consider only non-technical loss (NTL) theft,
which primarily refers to data tampering in the smart meter to minimize the tariff for the
malicious user.

The literature review (including survey papers [3–10]) shows that techniques used
for detecting theft or abnormal usage activities in the SG take note of the daily historical
electricity consumption pattern of that consumer. Machine learning (ML)- or artificial
intelligence (AI)-based approaches automate the detection of theft in the SG using various
techniques such as decision trees [10], artificial neural networks (ANN) [11,12], support
vector machine (SVM) [13], gradient boosting [14,15], clustering [16], deep convolution
neural networks [17], and so on.

From the literature review, it is also noticeable that conventional theft detection is
mainly based on energy consumption and not the pricing scheme. However, electricity
consumption behavior is highly influenced by external factors such as time of use price [2],
weather conditions [18], weekday/weekend, and so on. When these factors are considered,
time periods with high and low theft probabilities can be estimated. As a result, in order to
adapt to the layer of complexity introduced in the modern SG due ToU pricing, the theft
cases need to be revised.

Most importantly, in order to study ToU-based theft cases, we need granular datasets.
Currently, the dataset used in [17] is one of the first public electricity consumption datasets
with realistic labelled theft cases, released by the State Grid Corporation of China (SGCC).
However, the sampling rate is one per day, meaning, only the total daily energy usage
of the customers has been provided, so the SGCC data are not eligible for theft detection.
Fortunately, the ToU-based dataset of the Low Carbon London project solves this problem.
However, the only downside is the lack of real theft cases. Therefore, like many other
existing studies in the literature, we are limited to experimenting with synthetically gen-
erated theft cases in this paper. However, this issue can certainly be addressed in some
form in our future work. Mathematically defined theft cases that mimic the attackers’
practical intentions were first introduced by the authors in [10] to train their ML-based
consumption pattern-based energy theft detector (CPBETD) algorithm. Several existing
studies in the literature have followed the same style of theft dataset generation while using
ML/AI-based techniques to detect theft. Therefore, currently, modelling synthetic theft
cases is necessary if one were to test and evaluate his/her designed ML/AI techniques.

For theft detection, we propose a novel algorithm called the dynamic electricity theft
detector (DETD) by adding window-based theft cases (discussed below), where the ToU-
based dataset of the Low Carbon London project [19] is used as an example to illustrate
our concept. We will use gradient boosting-based classifiers, specifically focusing on
extreme gradient boosting (XGBoost) [20] as the base of our theft detector algorithm—
DETD; XGBoost has been discussed in more detail in Section 3. The primary reason of
choosing XGBoost is that its superiority has been proved in traditional NTL theft detection
of SG [14,15] as well as in various data mining competitions of different domains [20].
However, we leave room for improvement in the DETD algorithm as a part of our future
work by replacing gradient boosting techniques with other ML/AI techniques. In order to
tackle the lack of ToU pricing scheme-based theft detection, this paper begins by discussing
how to model realistically feasible synthetic theft cases in the SG, followed by proposing a
novel algorithm to detect the theft.

To overcome the shortcomings of the existing schemes, the following are the novel
characteristics of DETD, which constitute the contributions of the paper:

• DETD introduces a novel generation of new theft cases based on the ToU pricing
model, whereas the majority of existing studies in the literature rely mainly on fixed
pricing theft models. Hence, in the DETD algorithm, we use ToU as an example
external factor, such that training dataset generation is modified to accommodate the
latest ToU pricing-based SG metering.
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• Another unique aspect of DETD is the data preprocessing technique by concatenating
the usage vector with a window feature vector (explained in Section 4.2).

• Additionally, DETD handles imbalanced data by using the XGBoost [20] hyperpa-
rameter “scale_pos_weight” and thus, the overfitting issue in existing ML schemes
that is usually caused due to using the Synthetic Minority Oversampling Technique
(SMOTE) [21] is easily avoidable. Additionally, DETD reduces memory complexity
due to lack of synthetic data generated by SMOTE.

• In the paper, we train and test the DETD algorithm using XGBoost as the base ML
scheme for different consumers, report average performance results (detection rate
(DR) and false positive rate (FPR)), and evaluate the effect of the testing and training
dataset ratio on the performance of the theft detector (Section 4.3).

• In addition, windows based on other factors such as temperature, seasonal trends, and
so on can be used to train and create parallel (or combined) theft detectors, which can
contribute to a weighted average (weights being the relative numerical significance of
a certain factor for theft) towards improved theft detection (whose report is seen in
Section 4.5).

• Finally, DETD can harness the use of other alternative tree boosting algorithms (Sec-
tion 4.6).

Broadly, this paper can be broken into two main blocks—first, the generation of
smarter ToU-based synthetic theft cases and second, detection of the theft cases. The
detailed organization of the paper is as follows. In Section 2, we examine the need for new
theft cases by discussing the new smart grid pricing programs, explaining the dataset, and
briefly introducing the motivation of window-based theft cases. We then explain in detail
the generation of new synthetic theft cases on the basis of ToU pricing as a primary example
along with a minor note regarding the required performance standards for a practical theft
detector. Section 3 introduces the gradient boosting ML classifier and its hyperparameter
tuning. In Section 4, we introduce the proposed DETD algorithm, report its performance,
demonstrate additional theft cases detection, simulate theft windows using other factors,
and discuss alternative tree boosting approaches. Section 5 concludes the paper.

2. ToU Pricing Dataset and Synthetic Theft Cases Generation

Electricity theft is the malicious behavior of stealing electrical power from power grids,
which is done by tampering with a meter or hacking the pricing data being sent to the
utilities. For replication of the act of electricity theft, we use a real consumption dataset.
With the help of widely used mathematical models (discussed in Section 2.3), we develop a
methodology to model synthetic theft cases that can be used by our ML-based classifier for
tackling the smarter ToU pricing scheme theft.

In the following, we first discuss the new dynamic pricing models in the SG, introduce
the dataset using those models, explain the concept of window-based theft cases as well as
synthetic theft cases generation, and briefly address detection performance metrics.

2.1. New Types of Pricing Models for Smart Grid

Traditionally, consumers can only be billed for the electricity they used via static
pricing models such as flat rates or tiered rates [1]. However, in the SG, utilities using smart
meters are now capable of using new forms of time-based (or dynamic) pricing models
such as [1]:

1. Fixed Time-of-Use pricing (f-ToU): this typically applies to usage over broad blocks of
hours (e.g., for a weekday, on-peak = 6 h at afternoon; off-peak = 6 h at night; normal
= rest of the hours), where the price for each period is predetermined and constant.

2. Real-Time Pricing (RTP): pricing rates generally apply to usage on an hourly basis.
3. Dynamic Time-of-Use pricing (d-ToU): a hybrid of fixed time-of-use and real-time

pricing, where the different periods for pricing are defined in advance, but the price
established for the on-peak period varies by utility and market conditions.
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2.2. Dataset Metadata

The dataset [19] used in this paper contains electricity consumption (per half hour
(unit: kWh)), unique household identifier, and date and time readings for a sample of
1100 consumers of London households that took part in the UK Power Networks-led Low
Carbon London project between November 2011 and February 2014. Readings were taken
at half hourly intervals, i.e., the sampling rate fs = 48 (samples per day). The consumers
were subjected to dynamic Time of Use (d-ToU) electricity prices throughout 2013. The
tariff prices were given a day ahead via the Smart Meter IHD (In Home Display) or text
message to mobile phones. Consumers were issued High (67.20 pence/kWh), Low (3.99
pence/kWh), or Normal (11.76 pence/kWh) price signals and the times of day these
applied. Since each day has 48 readings or time indices, the default feature size is 48.

The consumption data along with d-ToU tariff data make the Low Cardon London
dataset a perfect candidate to implement the proposed DETD algorithm. Figure 1 shows
a sample energy consumption of a single day for a random consumer in the dataset
with corresponding ToU tariff periods (0—low, 1—normal, and 2—high price periods,
respectively).
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2.3. Novel d-ToU and f-ToU Price-Based Theft Cases Generation Using Novel Window-Based
Usage Analysis

As seen in the previous literature review, the dataset used in [17] is one of the first
public electricity consumption datasets with labelled realistic theft cases, with a sampling
rate of one per day: fs = 1. However, in order to study ToU-based theft cases, we need
datasets with a higher sampling rate (i.e., fs is much larger than 1) and labelled theft data.
Fortunately, the ToU-based dataset of the Low Carbon London project with fs = 48 solves
the first half of this problem. However, there still exists a lack of verified theft cases in
this dataset. Therefore, like many other existing studies in the literature, we are limited
to experimenting with synthetically generated theft cases in this paper. That is, until a
realistic public ToU pricing scheme-based dataset is released by a reputable source that
contains verified and labelled theft cases, synthetic theft case generation is necessary for
the testing of the proposed ML-based theft detection algorithm (see Section 4) and not
easily negligible; it is carefully analyzed in the next section.

In this paper, we assume that from the perspective of the attacker, any day can be
broken down into the two “windows”, i.e., the “theft period” window indicating time
periods where theft could result in maximum profit to the attacker and the “non-theft
period” specifying the least profit for the attacker. Hence, the synthetic theft cases proposed
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in this section are revisions of previous theft cases, taking these windows of variable time
durations into consideration. The “windows” could be, of course, randomly chosen time
slots or carefully planned time slots to maximize the profits of the attackers.

Based on our previous literature review, in many papers (such as [13,15]) where
existing flat pricing is chosen, the probable theft cases have been mathematically modelled
to mimic the intentions of the attacker using the entire consumption data of each day.
However, in the case of ToU, with the tariff prices given a day ahead via the Smart Meter
IHD text message to mobile phones, we assume that a malicious consumer may steal
electricity (or manipulate meter readings) only during certain periods with the intentions
to minimize his electricity bill and maximize his profits. From the dataset, we find that on
average, the high and normal price periods together contribute to approximately 97% of
the total tariff, which means the consumer will benefit the most if theft occurs during those
periods. Hence, when dynamic pricing is adopted, the theft pattern could be different from
static pricing and targeted to highly probable theft periods or simply the “theft period”,
denoted as xtp. Such a theft strategy may significantly reduce the consumer’s chance of
being caught by traditional consumption only-based classifiers.

In this paper, for simplicity and the availability of real-world data, we extensively
study the two window-based ToU pricing models, i.e., dynamic ToU (d-ToU) and fixed ToU
(f-ToU) and apply them to update (or revise) the conventional theft cases. Although the
f-ToU and d-ToU pricing systems are simulated in this paper, we can extend the proposed
methods to other pricing systems with ease (for example, RTP, etc.).

In the case of d-ToU, the low, normal, and high (or on-peak) price periods are not
at the same time every day, while high price and/or low (or off-peak) price periods are
absent on some days. Therefore, these windows are variable in size every day. On the
other hand, in the case of f-ToU, the on-peak, off-peak, and normal hours are at same
time every day such that the theft periods xtp are fixed for each day during the high and
normal price periods. Although the prices may vary on weekends vs. weekdays as well
as during different seasons, in our presented f-ToU, we assume a low-price period from
9:30 p.m. through to 8:30 a.m., a normal price period from 8:30 a.m. to noon and again
from 6 p.m. to 9:30 p.m., and, finally, a peak price period from noon to 6:30 p.m. based on
the reference [22].

Referencing the existing literature [10,12], the following would be typically defined
theft cases for existing static pricing strategy,

1. t1(xt) = xt ∗ random(0.1, 0.9);
2. t2(xt) = xt ∗ random[0, 1];
3. t3(xt) = xt∗ rt (rt = random(0.1, 1.0));
4. t4(xt) = mean(x) ∗ random(0.1, 1.0);
5. t5(xt) = mean(x);
6. t6(xt) = xT−t, (where T is the sample size per day, that is, 48);

where xt is the real usage of the consumer (t ∈ [0, 47] is the time index).
In this paper, new theft cases based on ToU pricing models are derived (modified) from

the six above listed theft cases as follows. After carefully observing the six conventional
flat price-based theft cases [13,15], for window-based ToU pricing synthetic theft data
generation, we eliminate the last three cases, which are trivial in our opinion, and revise
the first two cases slightly—cases 1 and 3. As seen above, theft case 1 multiplies each day’s
usage values with a random number between 0.1 and 0.9, while case 3 simply multiplies
usage values with a random value between 0.1 and 1.0 every sampling interval. However,
for the window-based cases, the user might sometimes send “0” during the theft period.
Therefore, we suggest that multipliers to 0.0 instead of 0.1 are used in both theft cases 1
and 3.

Furthermore, in the ToU pricing models, sending the reverse of corresponding real
usage is not feasible during that window, since we do not know the accurate future
usage beforehand. That is, especially the 6th theft case, where the consumer reports the
reverse of the actual usage for that day, practically has very little significance (the 4th
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and 5th cases using mean values as well) and no association with window-based theft
activities. Hence, we just choose the first three practical and reasonable theft cases from
the above list of six cases, for which window-based electricity theft could be considerably
active during the theft period—even simulation results regarding all six theft cases are
included in Section 4.4 and still show comparable results.

Therefore, we generate the novel three theft cases (based on the above discussion),
where theft occurs only during the theft periods, and train our classifier to detect them.
Figure 2 shows a regular real usage and various possible malicious/theft usage generated
by manipulating the real usage.
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The following are the window-based theft cases for the ToU pricing scheme:

1. t1
(

xtp
)
= xtp ∗ random(0.0, 0.9);

2. t2
(

xtp
)
= xtp ∗ random[0, 1];

3. t3
(

xtp
)
= xtp∗ rt (rt = random(0.1, 1.0));

where xtp or the “theft period” indicates the normal and high price period. The
remaining low-price consumption is assumed to stay unaffected by malicious behavior.

In this paper, we are using supervised ML, where artificially generated training theft
cases are not limited to the above three cases. In other words, if a new type of suspicious
attack is detected through other means by the utilities, additional training data based on
that theft pattern can be generated and the presented algorithm can be used to retrain the
theft detector to detect such additional cases (see Section 4.4).

2.4. Metrics Used for Theft Detector Performance

The dataset [19] used in this paper contains electricity consumption (per half hour
(unit: kWh)) and a unique household identifier. We used detection rate (DR) and false
positive rate (FPR) as the standard metric for reporting theft detection. From [13], if “I”
stands for intrusion (theft) and “A” for alarm (detection), the following equation defines the
probability of intrusion actually occurring, given that we detected some malicious activity:

P(I|A) =
P(I) × DR

P(I) × DR + P
(

I
)
× FPR

(1)

where P(I) is the probability of intrusion and P
(

I
)

the probability of no intrusion.
From (1), the lower the FPR, the better the probability is of detecting theft when it

occurs. In the case of electricity theft, P(I) is usually a small value, even it varies in different
areas. Thus, high DR with extra emphasis on low FPR is preferred for a real-world energy
theft detector, meaning if we have two detectors with comparable DRs, we will prefer the
one with lower FPR.

3. Extreme Gradient Boosting (XGBoost) Classifier Basics

The following subsections discuss XGBoost [20], a gradient boosting classifier that
forms the base classifier of our earlier algorithm Gradient Boosting-based Theft Detector
(GBTD) as well as the current proposed scheme “DETD” (see Section 4 for the details), and
describe its various hyperparameters that could be manipulated while training.
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3.1. Overview of XGBoost Objective Function

Typically, for an ML algorithm, the general objective function is the sum of loss
function (L) and regularization term (Ω) over the parameters (θ) as follows:

Obj(θ) = L(θ) + Ω(θ). (2)

The XGBoost’s objective function (derived from Equation (2)) combines the sum of
a specific loss function (l) evaluated over all n predictions (or samples) and the sum of a
regularization term (ω) for all predictors (K decision trees) as follows:

Obj(θ) =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

ω( fk), (3)

where fk is the kth decision tree function, yi the actual label of the ith sample, and ŷi the
predicted label of the ith sample. The official XGBoost hyperparameter tuning guide [23]
explains the decision tree structure and the objective function in more details.

The goal of the classifier algorithm is to decrease the objective function in (3) as much
as possible. Loss function in (3) could be either log-loss function, squared loss function,
or others. It controls the prediction error of the ML model, while the regularization term
controls its complexity by adjusting the size of the tree structure, depth of the trees, and so
on.

In short, XGBoost [20] involves creating and adding trees to the model sequentially.
New trees are created to correct the residual errors in the predictions from the existing
sequence of trees. The effect is that the model can quickly fit, then start to overfit the
training dataset. In general, the phenomenon of overfitting needs to be avoided for biased
performance in any ML model. This is usually achieved by tuning the hyperparameters
of the ML model during the training and testing phases to achieve a balanced fitting
performance. Additionally, the XGBoost classifier is equipped with a “feature_importance”
module, which can help us to understand the classifier model deeply by providing a feature
score (f-score) of every feature.

3.2. Hyperparameters

Table 1 is a brief explanation of the commonly used hyperparameters of the presented
XGBoost-based DETD algorithm and lists their corresponding values to reproduce the
results shown in this paper.

Table 1. Hyperparameter values of extreme gradient boosting (XGBoost) used in the dynamic
electricity theft detector (DETD).

Hyperparameters Values Description

loss function binary:logistic Binary classification problem

learning_rate 0.1 Weighting factor for learning (optimizing the
objective function) in gradient boosting

n_estimators 100 Number of trees to be generated

max_depth 1 Depth of the trees generated

scale_position_weight 0.33 Parameter to balance negative and positive classes

reg_lambda 1 L2-regularization term on weights of the leaf values

gamma 1 Decides if a node has to be split or not

column_sample_by_tree 1 Portion of columns to be randomly sampled for each
successive tree

n_jobs 2 Number of cores to be used for parallel processing
computation
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The value of “loss function” is set to “binary: logistic”, since we are dealing with
a binary classification problem. The model can be made more robust by adjusting the
“learning rate” parameter, which minimizes the size of each step during every iteration
of the algorithm. We set the default value of “learning rate” as 0.1. The default value of
“n_estimators” is set to 100, which specifies the number of trees to be generated. Details
about other parameters can be found in [20] and Table 1. Additionally, in [24], the authors
state that a lower FPR with reasonable DR is a good measure of a good intrusion/theft
detection system. Another note is that the hypermeter values have been set using guidelines
in [23,25] using random search.

4. Proposed DETD Algorithm and Simulation Results

In this section, we first reflect on the performance drawbacks of existing classifiers
and then, introduce the DETD algorithm with step-by-step parameter tuning. Finally, we
evaluate the proposed novel algorithm, whose performances are reported and compared
to existing algorithms.

4.1. Short-Comings of Existing Schemes and Novel Features of DETD

Every day with variation of probable theft/non-theft durations requires the generation
of new theft cases based on the concept of “theft window”. Existing schemes based on our
literature review have shown to have really high theft detection performance for traditional
standard theft cases. However, for ToU pricing-based theft cases, we can see via simulation
that existing schemes have deteriorated performance.

For example, in our average simulation results for 1000 consumers, Table 2 shows the
existing SVM-based CPBETD algorithm [13] has a detection rate of 67% for d-ToU cases
and 72% for f-ToU cases, while the XGBoost-based GBTD algorithm [15] has a detection
rate of 87% for d-ToU cases and 89% for f-ToU cases. Additionally, the CPBETD algorithm
exhibits 34% FPR in d-ToU cases and 29% in f-ToU cases, while the GBTD algorithm shows
11% FPR in d-ToU cases and 8% in f-ToU cases. As a result, existing schemes do not give
satisfactory results for those ToU cases. Hence, in order to protect the SG from potentially
such “smart” theft, this paper presents another XGBoost-based algorithm called “DETD”,
which will be explained in the next subsection in detail.

Table 2. Average theft detection performance of SVM-based CPBETD and XGBoost-based GBTD
when using the dynamic ToU (d-ToU) and fixed ToU (f-ToU) window-based theft cases for an average
of 1000 consumers (Existing Schemes).

CPBETD d-ToU f-ToU

DR [%] 67 72
FPR [%] 34 29

GBTD d-ToU f-ToU

DR [%] 87 89
FPR [%] 11 8

4.2. The Proposed Algorithm

Our proposed algorithm has the following steps which are repeated for every con-
sumer in the SG. Since the performance and complexity of the theft detector vary based on
the consumer usage pattern, we report the average performance of the algorithm. In order
to replicate theft window-based theft cases, we use the d-ToU and f-ToU pricing data to
generate our malicious samples. We assume that the “normal” and “high” price periods
are the most likely theft period or “theft window period”, while the “low” price period is
the least likely theft period or the “non-theft window period”.

To train the XGBoost module in the DETD algorithm, we label the generated theft
patterns as “1” and corresponding real usage patterns as “0”. During the training stage,
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the theft detector is trained to minimize error between actual labels and predicted labels
(“0” or “1”). Figure 3 describes the algorithm in a block diagram.
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DETD Algorithm:

i. Dataset cleaning to fill in missing values or adjust sampling using standardized
techniques.

ii. Store the usage values in a “usage feature vector” of size 48.
iii. Create the theft window period and non-theft window period feature vector using

0 or 1 as the respective values on the Y-axis and store them in a “window feature
vector” of size 48.

iv. Generate synthetic theft cases which are based on the window feature vector corre-
sponding to the real usage vectors.

v. Concatenate the usage feature vector generated in step ii with the window feature
vector obtained in step iv to generate a feature vector of size 96.

vi. Label vectors with real-usage and theft-usage cases as “0” and “1”, respectively.
vii. Split the dataset into training and testing data in the ratio of 7:3.
viii. Train and test the binary classifier. Here, we use the XGBoost classifier with the

novel training set while passing the hyperparameter “scale_pos_weight”, which is
the “number of theft usage data/number of benign (real) usage data”, to scale the
imbalance in the two classes.

ix. Use random search for hyperparameter tuning to optimize the XGBoost classifier.

We report the performance for d-ToU using the test set (for an average of 1000 con-
sumers) in Table 3. Then, we repeat the same process (steps i to vii) for f-ToU and report
it accordingly. Note that passing the “scale_pos_weight” value eliminates the need for
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creating synthetic minority class (benign) data using SMOTE [21], such that memory usage
is reduced and the classifier is kept from overfitting.

Table 3. Average theft detection performance of DETD when using the d-ToU and f-ToU window-
based theft cases for an average of 1000 consumers.

DETD d-ToU f-ToU

DR [%] 97.5 98
FPR [%] 4 3

Figure 4 shows the novelty of the DETD algorithm, showcasing the novel 96 feature
data processing by concatenating the consumption data with ToU pricing data. Although
emphasizing the ToU pricing-based window feature vector in the algorithm, we can
substitute (or combine) it with other window vectors, if it is necessary.
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Throughout the paper, all the simulations were performed using Python programming
language on an Intel i7 processor, Nvidia RTX 2070 graphic card with a 16 GB RAM system.

4.3. Evaluation of the Proposed Method and Results

In Table 3, we report the average classification performance in terms of detection rate
(DR) and false positive rate (FPR). From the simulation results of Table 3, we see that DETD
has 97.5% DR and 4% FPR for d-ToU pricing, while having 98% DR and 3% FPR for f-ToU
pricing. We confirm that the proposed scheme in Table 3 has an improved performance
when compared to existing schemes in Table 2. We see that DETD detects higher theft cases
than 87% and 89% of the theft cases detected by “vanilla” GBTD [12] and 67% and 72% of
the theft cases detected by CPBETD for d-ToU and f-ToU cases, respectively.

The performance increase can be attributed to having trained with the new window-
based theft cases, which are based on not only the energy consumption but also the tariff
in contrast with earlier models. CPBETD and “vanilla” GBTD were primarily trained
only on consumption, with theft occurring throughout the day. When faced with irregular
and smart (i.e., window-based) theft cases, these existing algorithms failed to detect the
majority of them because of lack of training.

Lack of historical data is also an important issue that can be addressed using DETD.
To study the effect of testing and training set ratio on DETD’s performance, we run the
DETD algorithm multiple times, starting at 10 percent up to 95 percent of a year’s data as
training data, with a 5 percent increment at every iteration. Due to the intensive nature of
this simulation, we present an average of 50 random consumers as a preliminary report in
Figure 5.
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We observe that with as little as 5 percent of a year’s data being used for training, the
DR is around 87% and the FPR is around 24%. As expected, the DRs and FPRs gradually
improve over the course of increasing training data, with DR being around 99% and FPR
being around 3% when 90 percent of the data is used for training.

4.4. Additional Theft Case Detection

Power utility companies could face certain theft cases that are very much specific
to a particular smart grid, which may be different (varied or expanded) from proposed
mathematical cases. On such an occasion, the utilities may need to retrain (adapt) the
presented theft detector with those specific theft cases.

As a simple example, we consider additional ToU theft cases, where the malicious
consumer decides to report 0 kWh usage during the high price period.

The following defines such specific window-based theft cases, while the high-price
period consumption is set to 0, i.e., t

(
xhigh_price

)
= 0:

1. t1
(

xnp
)
= xnp ∗ random(0.0, 0.9);

2. t2
(

xnp
)
= xnp ∗ random[0, 1];

3. t3
(

xnp
)
= xnp∗ rnp (rnp = random(0.0, 0.9);

where xnp indicates the normal price period. The remaining low-price consumption is
assumed to stay unaffected by malicious behavior.

Via simulation, we generated a separate testing dataset using the above equations for
such cases only and found that 98% of those cases were detected without extra need for
retraining the entire classifier.

The discarded theft cases 4, 5, and 6 from Section 2.3 were also tested while using
DETD without additional retraining and detected with an accuracy of up to 97% in the
average sense. This shows that DETD is at par with current ML-based electricity theft
detectors performance wise, even for conventional theft cases.

4.5. Theft Detection Using Other Factors Such as Weather Data

The authors of the paper [18] state that electricity supply and demand are becoming
increasingly weather-dependent. For a simple demonstration, we assume a hypothetical
situation during 3 months of summertime, where the total energy consumption in the grid
is high during periods from 12 noon to 4 p.m. (assuming increased AC usage). During this
window of high energy demand, the malicious user could report corrupted meter readings
with high probability. Thus, as a theft detector trained on weather-dependent theft cases,
DETD could be the next logical choice for the utility company. As shown in Table 4, a
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quick simulation of this simple experiment results in 97.3% DR with 8.1% FPR (training
and testing on 3-month summer data). On a side note, this theft window resembles the
f-ToU case discussed earlier in Section 2.3. Similarly, additional weather conditions can be
combined to determine better theft windows and detectors could be trained accordingly
using DETD.

Table 4. Average theft detection performance of DETD when using the weather-dependent theft
cases for an average of 1000 consumers (trained and tested on 3-month data).

DETD 3-Month Summer Window

DR [%] 97.3
FPR [%] 8.1

4.6. Using CatBoost and LightGBM as Alternative Approaches

Additionally, instead of XGBoost, we use other alternative boosting algorithms such as
LightGBM [26] and CatBoost [27] and report the corresponding results concisely in Table 5.

Table 5. Average theft detection performance of LightGBM- and CatBoost-based DETD when using
the d-ToU window-based theft cases for an average of 1000 consumers.

LightGBM d-ToU f-ToU

DR [%] 97 97
FPR [%] 7 5

CatBoost d-ToU f-ToU

DR [%] 98 98
FPR [%] 3 2

In general, LightGBM performs the fastest with lower DR and higher FPR, while
CatBoost performs slowest with higher DR and lower FPR amongst all the three gradient
boosting variants. Additionally, LightGBM and CatBoost also have hyperparameter tuning
capabilities to optimize performance based on the requirements.

5. Conclusions

For the upcoming SG utilities adopting the dynamic (d-ToU or f-ToU) pricing program,
we have proposed a modified gradient boosting-based theft detector (DETD) that has a
good detection capability for highly probable window-based theft cases. In the presented
ML procedure, we have broken down the daily samples with two theft windows (“theft
window” and “non-theft window”), generated such synthetic theft cases in advance,
and trained and tested the DETD based on the usage data of the consumers and their
corresponding ToU prices. The simulation results proved that our DETD algorithm that
has additional training and provides fine tuning of hyperparameters, which improves the
performance of theft detection over existing ML schemes.

While electricity theft is directly dependent on actual power consumption, it can be
indirectly affected by other window factors that influence real usage such as the pricing
scheme used in the SG, temperature data, seasonal trends, and so on. Taking that into con-
sideration, in our proposed algorithm DETD, we have reported a ToU pricing scheme-based
theft activity effect via simulation. As a classifier in our algorithm, alternatives to XGBoost,
such as CatBoost and LightGBM, have been tested for their respective performances.

Further work may include creating a global theft detector for the entire grid that
detects theft irrespective of the user (one detector for the whole grid instead of one for each
consumer) is another important step towards futuristic and practical theft detection. Addi-
tionally, automated parameter tuning using Bayesian processes or a better replacement of
gradient boosting techniques with other ML/AI techniques can further help in optimizing
theft detection using DETD.
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