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Abstract: Traditional psychiatric diagnosis has been overly reliant on either self-reported measures
(introspection) or clinical rating scales (interviews). This produced the so-called explanatory gap
with the bio-medical disciplines, such as neuroscience, which are supposed to deliver biological
explanations of disease. In that context the neuro-biological and clinical assessment in psychiatry
remained discrepant and incommensurable under conventional statistical frameworks. The emerging
field of translational neuroimaging attempted to bridge the explanatory gap by means of simultane-
ous application of clinical assessment tools and functional magnetic resonance imaging, which also
turned out to be problematic when analyzed with standard statistical methods. In order to overcome
this problem our group designed a novel machine learning technique, multivariate linear method
(MLM) which can capture convergent data from voxel-based morphometry, functional resting state
and task-related neuroimaging and the relevant clinical measures. In this paper we report results
from convergent cross-validation of biological signatures of disease in a sample of patients with
schizophrenia as compared to depression. Our model provides evidence that the combination of the
neuroimaging and clinical data in MLM analysis can inform the differential diagnosis in terms of
incremental validity.

Keywords: multivariate linear method; validation; diagnosis; discriminative; signatures of disease;
schizophrenia; depression

1. Introduction

Schizophrenia (SCH) and depression are psychiatric disorders that have a very high
prevalence in psychiatric clinical care and cause immense social burden in terms of disabil-
ity and health care costs [1]. They are amongst the most detrimental and socially significant
disorders which lead to chronic disability of the patients. Those individuals have an average
mortality rate that is 2-3 times greater than the general population, resulting in a reduced
lifetime of 10 to 20 years [2]. Both schizophrenia and depression are associated with a high
risk of comorbidity with somatic illnesses as well as other psychiatric disorders, which
leads to serious health consequences in addition to the substantial risk of self-inflicted
death [3,4]. Therefore, it is crucial to make advances in the diagnostic and therapeutic
approaches to improve the prognosis and outcome of these debilitating conditions. [5].

However, this essential enterprise is hugely intertwined with the undefined frame-
work of psychiatric nosology and categorization. Thereupon, contemporary research has
drifted towards a paradigm shift, namely the Research Domain Criteria Project (RDoC)
comprehending mental disorders not as distinct entities but as spectral dimensions encom-
passing their biological, psychological and phenomenological features [6]. A number of
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studies exploring the symptomatologic overlap among different disorders have demon-
strated the existence of neurobiological alterations associated with various dysfunctions
which transcend beyond the categorical classification of SCH, bipolar disorder, and major
depressive disorder (MDD) [7,8]. Moreover, in the affective dichotomy of BD II and MDD
the subthreshold hypomanic syndrome is not reflected properly in the formulation of MDD
diagnosis in clinical practice [9]. Therefore, it is difficult to assume clear and uncontestable
cases of MDD, especially in the longitudinal sense, which is valid for our sample as well.
In addition, there is a lack of valid consensus-based biomarkers to underpin the clinical
diagnosis in psychiatry [10].

In order to address this, our research team has implemented a novel paradigm de-
sign directed towards the cross-validation between self-assessment scales and functional
MRI [11–13]. We have used von Zerssen’s Paranoid Depression Scale as it captures symp-
toms spanning across the spectrum from psychosis to depression. In the initial experiment
we used items from the depression subscale in patients with depression and healthy con-
trols, which resulted in establishing the sensitivity of the method, i.e., the distinction
between pathological and normal states [11]. Subsequently, we developed the experimental
paradigm by including items from the paranoid subscale with the aim to determine the
specificity (i.e., distinction between two pathological states) as well, by its implementation
in two groups of patients—schizophrenic and depressed. While the standard statistical
methods did not allow for a significant differentiation between the groups in a direct com-
parison [12] the use of the multivariate linear model (MLM) resulted in the identification of
specific brain signatures with a high level of prediction accuracy reaching 90% [13].

However, one of the critical caveats in the interpretation of MRI data in psychiatry is
multiple realizability [14]. Alterations in different regions are reported to be implicated
in the pathogenesis of one and the same phenomenon in psychopathology (symptom or
sign) and different clinical phenomena are often explained by changes in one and the same
brain region. This may well be due to confound originating from the research design
such as sample structure, criteria for exclusion and inclusion, medication, gender, and age
co-variates. Furthermore, it may also be due to the biased application of one or another
MRI modality (structural, functional resting state, and task related).

Recently, the multimodal neuroimaging approach plays an increasing role in elu-
cidating the structural and functional properties of a healthy or abnormal brain. Such
computational methods are also valuable for clinical research on the dynamics of disease de-
velopment [15]. An illustration is multimodal fusion, where the objective is to focus on the
strength of each imaging modality and its interrelationships as a compound entity instead
of an independent analysis. Thus, each imaging approach represents an aspect of the func-
tion and/or structure of the brain and the data fusion translates it into a collaborative space,
providing an important tool to help uncover the underlying pathobiological mechanisms
of mental disorders. In addition, the method allows for a composite analysis including
augmentation of the neuroimaging sequences with modalities such as genetic data [16],
aiming at the possibility for computational classification of psychiatric disorders [17,18].

Although the existing methodological gaps are a significant confounding factor for
the clinical application of such approaches [19], scientific research has provided substan-
tial evidence for the potential future implications in the study, diagnosis and treatment
of disorders of the central nervous system (CNS). Latest advancements in data fusion
transcend the usage of conventional general linear model-based approaches attempting a
convergence of several (task) fMRI data sets from the same individual in order to specify
common versus specific sources of activity [18]. Furthermore, an evidence-based deter-
mination of the functional significance of certain brain regions and activation changes in
brain disorders enhances the confidence and reliability of the methods. The reciprocal
interpolation of functional and structural modalities may also provide more informative
insight into identified alterations of brain architecture and/or connectivity patterns [20].

Investigating several data sets (e.g., combining functional Magnetic-Resonance Imag-
ing, Diffusion Tensor Imaging and structural Magnetic-Resonance Imaging (fMRI-DTI-
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sMRI)) in a comparison between patient and control groups is an innovative attempt,
which may be used in the study of various neuropsychiatric disorders or subsets of a
particular disorder (such as psychotic or non-psychotic bipolar disorder) [21]. In addition,
the utilization of machine learning algorithms as an analytical entity of fMRI data offers the
opportunity not only to expand the interdisciplinary exploration of the etiopathogenesis of
psychiatric disorders but also to accelerate the process of translation between science and
clinical practice [22].

In this context, we conceptualized our current study along the hypothesis that mul-
timodal imaging can allow for better definition of the fundamental biological signatures
of paranoia and depression as the two-dimensional extremities of the hypothesized diag-
nostic spectrum via the combination of the fMRI signal in three different neuroimaging
modalities—structural, resting state and task related fMRI. We used multivariate linear
model (MLM) as a method, which not only permits the processing of vastly dimensional
data [23], but has also been established as reliable in the application to different neuroimag-
ing techniques [24,25]. Thus, the aim of the present study was to assess to what extent the
combination of these different imaging modalities i.e., resting state and task related fMRI,
along with structural MRI can contribute to the differentiation of these major psychiatric
disorders.

2. Materials and Methods
2.1. Participants

The current study recruited a total of 44 patients of whom 19 with schizophrenia
(mean age 39.3 ± 14.8 years, 9 males), and 25 with current depression (n = 25, mean age
44.2 ± 12.1 years, 9 males): Unipolar (n = 10, mean age 43.7 ± 13.2 years, 5 males) and bipo-
lar 2 (n = 15, mean age 44.5 ± 11.8 y, 4 males). Each patient was assessed by an experienced
psychiatrist (D.S, S.K., K.A.) by means of a general clinical interview and the structured
Mini International Neuropsychiatric Interview (M.I.N.I 6.0) [26]. The Montgomery–Åsberg
Depression Rating Scale (MADRS) [27] and the Positive and Negative Syndrome Scale
(PANSS) [28] were used in addition to assess the severity of the symptoms. The cut-off
for inclusion of depressed patients was set to a minimal total MADRS score of 20, while
for schizophrenia and individual score on PANSS P1 (delusions) or P6 (suspiciousness)
of 3 was required. All patients had a steady pharmacotherapeutic regime within 14 days
before inclusion. In patients with schizophrenia, drugs from the pharmacological group
of antipsychotics predominated, while in the group of depressed individuals the majority
took antidepressants and/or mood stabilizers (anticonvulsants). The most commonly
taken drugs in the paranoid group were atypical antipsychotics. One of the subjects in
the paranoid group did not take any medication. Among the most common medica-
tions in the depression group were Selective serotonin reuptake inhibitors (SSRIs) and
Serotonin–norepinephrine reuptake inhibitors (SNRIs), in combination with mood stabiliz-
ers and tranquilizers. There was one patient in the depressed group who was not taking
medication.

Subjects were excluded in the following cases: Age under 18 or over 65, presence of
metal implants in the body that are not compatible with MRI, comorbid mental disorders,
any severe somatic or neurological disease, and history of traumatic brain injury with loss
of consciousness.

2.2. Image Acquisition

All participants underwent a scanning procedure performed on a 3T MRI system
(GE Discovery 750w). The protocol included three different MRI sequences: First a high
resolution structural scan (Sag 3D T1 FSPGR), slice thickness 1 mm, matrix 256 × 256, TR
(time of relaxation) 7.2 msec, TE (echo time) 2.3 msec, and flip angle 12◦, followed by a
resting state functional scan with eyes closed (2D EPI sequence), slice thickness 3 mm,
36 slices, matrix 64 × 64, TR 2000 msec, TE—30 msec, flip angle 90◦, 192 volumes and
concluding with a task sequence (see following paragraph), slice thickness 3 mm, matrix
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64 × 64, TR 2000 msec, TE 30 msec, and flip angle 90◦, 256 volumes. Each of the two
functional scans started with 5 dummy time series which were automatically excluded
from the image processing.

2.3. fMRI Task

E-prime software (Psychology Software Tools, Inc.) was used to construct the paradigm
which consisted of 32 s blocks with three different active conditions and one 20 s block
with the rest condition. As it is has been extensively described in our previous work [12],
a brief summary will be given in the following lines.

The stimuli were written statements from the von Zerssen’s paranoia-depression scale
and from a questionnaire of general interests. There were Depression Specific (DS) blocks
with the statements from the depression subscale (“I cry easily”, “I feel melancholic and
depressed”), and Paranoid Specific (PS) blocks from the paranoia subscale (“Somebody
wants to kill me”). The Diagnostically Neutral (DN) blocks included statements from
a questionnaire about general interests and likes (such as “I like to repair household
appliances” etc.). The participants were instructed to read the statements carefully and to
respond with a button press according to their level of agreement. There were four possible
answers (“completely true”, “mostly true”, “somewhat true”, “not true”) and respectively
four response buttons (upper left, lower left, lower right, upper right) presented on the
screen under each statement. The paradigm consisted of four active blocks of each type,
alternating between the three conditions but always followed by the rest condition—
fixation cross (DS__rest__DN__rest__PS__rest).

2.4. MRI Data Analysis
2.4.1. Voxel-Based Morphometry

SPM 12 (Statistical Parametric Mapping, http://www.fil.ion.ucl.ac.uk/spm/) soft-
ware running on MATLAB R2020 for Windows was used for the analysis of the structural
MRI images. Spatial preprocessing included first individual segmentation followed by
normalization to the Montreal Neurological Institute (INM) template created with a dif-
feomorphic anatomical recording using exponentiated lie algebra (DARTEL; Ashburner,
2007). Finally, the resulting modulated grey matter volume estimate was smoothed with a
3D Gaussian kernel (8 mm full width at half height, FWHM) to account for the individual
anatomical differences. Total intracranial volume (TIV) was derived for each participant
and included as a covariate in the analyses to account for global individual differences in
head size.

2.4.2. Task-Related Functional Data Processing

The functional images acquired during the task were realigned, co-registered with
the anatomical image, normalized to MNI space, and spatially smoothed with an 8 mm
FWHM Gaussian kernel. General Linear Model (GLM) was then applied to the time series,
convolved with a canonical hemodynamic response function (HRF). The design matrix
included the six rigid body motion correction parameters as covariates of no interest.
Individual F-contrasts were defined for all active conditions orthogonal to the motion effect
to be further used for the MLM analysis.

2.4.3. Resting State Data Processing—Whole Brain Residual Partial Activations

The images acquired during resting state were processed in the same way as the
task-related fMRI images—realignment, co-registration, normalization and smoothing.
These processing steps were followed by the application of a GLM with a canonical HRF
convolution to the time series. The individual residual mean square images were used for
the consequent first level MLM analysis.

http://www.fil.ion.ucl.ac.uk/spm/
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2.4.4. MLM Analysis

To identify the brain signatures which encompass most of the differences between the
diagnoses and between the different mapping modalities, we used a multivariate method,
namely the Multivariate Linear Model—MLM (https://github.com/LREN-CHUV/MLM).
MLM is a data driven approach which has shown great potential for summarizing and
capturing the components of individual differences across multiple areas. The method has
wide applicability for statistical reference, predictive approach, and statistical mapping. We
extended the MLM root method to a multi-level approach in order to capture multi-scale
latent variables in hierarchically organized data.

To adapt to our data sets and the corresponding assumptions, we have implemented
a two-step procedure. In the first step, we performed an MLM analysis of each of the
modalities with the constraints operationalized in an F-test for the differences between
the two diagnostic groups. The procedure identified the optimal brain mapping signature
(or eigen-image) discriminating between the two groups of diseases. The method also
produced a subsystem load displaying the discriminative information but at a subject level.

At the second step, we also performed an MLM analysis using the results (clean
image and eigen-components) from the first step. Thus, we attempted to find the optimal
combination from the previous mapping which best explained the difference between the
diagnostic groups, so that theoretically we could identify up to 3 of these components
(Figure 1).

2.5. Statistical Analysis

SPSS 22.0 for Windows was used for the statistical analysis of the demographic
and clinical characteristics of the participants. Continuous variables were tested with
Student’s t-test while categorical ones—with Chi-square test. The threshold for the level of
significance was set to p < 0.05 for all tests.

https://github.com/LREN-CHUV/MLM
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Figure 1. Schematic representation of the multimodal multivariate linear method (MLM) approach.
Multi-modal MLM takes place in two stages. First, separate MLMs are done for each modality. Each
MLM analysis will identify the eigen-image (brain signature) and the corresponding subjects’ scores
that best explain the differences between the two groups. In the second step, we use MLM and
the eigen-images (or the scores) from the previous stage to identify the best combinations of the
modality-specific signatures and the corresponding combined brain signatures.

3. Results
3.1. Demographic and Clinical Characteristics

The two patient groups were not significantly different in their demographic and
clinical characteristics such as age, education level, age at onset, and illness duration.
Table 1 shows the characteristics we have controlled for in the sample.
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Table 1. Demographic and clinical characteristics of the participants.

Characteristics Schizophrenia Patients
(n = 19) Depressed Patients (n = 25) Statistical Significance

Age (mean ± SD) 39.3 ± 14.8 44.2 ± 12.1 0.231 a

Sex (M/F) 9/10 9/16 0.542 b

Education (years) 13.5 ± 2.8 14.1 ± 3.5 0.548 a

Age at onset (years) 27.1 ± 9.1 33.8 ± 12.4 0.139 a

Illness duration (months) 142.8 ± 121.6 121.8 ± 84.5 0.505 a

Episode duration (weeks) 15.4 ± 14.1 11.9 ± 10.4 0.403 a

SD—Standard Deviation, a Independent samples t-test, b χ2—test.

3.2. MLM Analysis
3.2.1. Modality Specific MLM

MLM was applied separately to the data from all three modalities combined with
a similar model (Figure 2) that included a covariate for patient groups and adjustment
covariates (age, sex, IVR).
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Figure 2. MLM components and subjects score for each of the modality. The first subjects, to the left (x-
axis = N of subjects) correspond to the schizophrenia group and the rest to the depression group. The
blue lines correspond to the calculated empirical components and the red dashed lines correspond
to its projections/prediction in the space defined by the condition of interest, i.e., the differences
between the two diagnostic groups. First segment of the figure shows the specific components
identified using the resting state fMRI data, second segment shows the eigen-components which
best summarize the fMRI task-related data; last segment shows the specific components for the
anatomical differences between the two patient groups.

3.2.2. MLM Analyses across the Modalities

For this analysis, we used the electronic images from the first stage as input. Note that
the subject loads can be used instead, and the results will remain the same (the reason is
that subject spaces and the picture space are doubled, i.e., one space can be derived from
another by a simple matrix transformation). Presently, we report the results found in the
image spaces.

We found that all eigenvalues were not null for the 3 components, which means they
are all informative. The variance explaining the difference between the diagnostic groups
by each component was respectively (35%, 33%, and 32%). Figure 3 shows the optimal
contribution to each of these components.
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is driven by the functional modalities. The last bar plot, shows that the largest contribution in the third component is from
the anatomical brain signature. (B–D) are the corresponding eigen-images calculated by MLM projected on a 3D surface.
The voxel values in the eigen-images represent the correlation of the value across all subjects at that voxel with the identified
principal components.

The first component shows an equal contribution of the 3 modalities. Figure 3B shows
the contribution (positive or negative) of the voxels to the mapping which corresponds to
the first component.

The second component shows a difference between the idle state and the functional
data related to the task. The contribution of the structural anatomy is low. Figure 3C shows
the mapping corresponding to the third component, which is characterized by a larger
contribution of the structural modality.

The eigen-images above were automatically parcellated into 114 gray matter regions
based on Neuromorphometrics atlas (containing cortical and subcortical structures) using
the SPM atlas function (spm_atlas in SPM12). To identify which regions were contributing
the most to the combined brain signature across modalities, we calculated the average
of the voxel’s projections from the maps in Figure 3A–D for all regions of the Neuromor-
phometrics atlas. The results are shown in the Figures 4–6 for the first, second and third
component respectively.
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4. Discussion

The main highlight of our study demonstrates the differential contribution of the
various MRI modalities as combined in principal components (PC) to brain signatures with
high capacity for discrimination of the two diagnostic entities studied (schizophrenia and
depression). In PC1 the three modalities have convergent cross-validation, i.e., explanatory
power of structural, resting state and functional MRI which remain in one and the same
direction and encompass pathways with nodes in the Default Mode Network (DMN). PC 2
is composed of divergent cross-validation of resting state and task-related functional MRI,
which means that the direction of the explanatory power of the structural and functional
measures is exactly the opposite. This PC includes the effort-mode network and subcortical
areas. The PC3 is driven by MRI signal in the structural MRI and covers temporal and
occipital areas.
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In the brain signature corresponding to PC1 the regions with the highest discriminative
power were localized in left sided Planum Polare (PP), transverse temporal gyrus, opercular
and orbital part of the Inferior Frontal Gyrus (IFG), insular cortex (both anterior and
posterior), medial frontal cortex, basal forebrain and accumbens area (both left and right).
The relevance of these regions to the two diagnostic entities studied will be discussed in
the following lines.

The left Planum Polare was the most prominent structure in our study that was
correlated with the most discriminative value in all three brain signatures. PP is part of
the Superior Temporal Gyrus (STG), which is involved in auditory processing, including
language, but also has been implicated as a critical structure in social cognition. The STG
has been found to be active during processing of emotional facial expressions [29]. It was
also shown to be an essential structure in the pathway of the amygdala and prefrontal
cortex, both of which are involved in processes of social cognition [30]. Neuroimaging
studies have found that people with schizophrenia have structural abnormalities in their
STG [31]. Dysfunction in the primary auditory cortex in the anterior and middle STG and
the auditory association cortex in the posterior STG is assumed to play a role in causing
auditory perceptual disturbances and impaired organization of thought, respectively [32].
There is convergent data that auditory hallucinations are related to a functional network of
brain areas, namely auditory and language regions of the STG and Inferior Parietal Gyrus
(IPG), and speech motor regions in the IFG [33–35].

The portion of the frontal lobe that overlies the insular cortex is the opercular part of
the inferior frontal gyrus [36]. The inferior frontal gyrus/anterior insula (IFG/AI) region is
involved in complex attention and working memory processing. Ventrolateral corticolimbic
control pathways, including IFG/AI, and mediodorsal corticolimbic control pathways,
along with dorsal Anterior Cingulate Cortex (ACC) regions, perform partially separable
but interconnected roles in adaptive behavior under environmental circumstances that vary
in the degree of predictability [37]. The IFG/AI is one of the regions that activate when
exhibiting anxiety and stress induced behavior [38]. In addition, antidepressant effects and
sleep deprivation were associated with an activity change from IFG/AI to dorsolateral
prefrontal cortex [39].

Nucleus accumbens (NAcc) which is also prominent in PC 1 is engaged in the control
of emotions and affects integration. This region is a central output for dopaminergic (DA-
ergic) projections and also receives glutamatergic input from the hippocampus and the
prefrontal cortex [40]. The NAcc and the medial prefrontal cortex receive projections from
the ventral tegmental area, which is also a DA-ergic nucleus.

The DMN is suggested to have a potential role in the integration of cholinergic and
DA-ergic networks related to memory and emotions [40]. Stimulants of the Central Ner-
vous System (CNS) like amphetamines are known to significantly increase the extracellular
level of dopamine (DA) and noradrenaline (NA) in functional connectivity networks [41]
via DA-ergic and noradrenergic (NA-ergic) terminals which are highly distributed in corti-
cal areas. Administration of dextro-amphetamine (dAMPH) increases both DA and NA in
the prefrontal cortex, but only DA in the striatum. As such, the regulation of connectivity
networks in the striatum can be determined primarily by the release of DA, whereas the
cortical functional connectivity is both affected by changes of DA and NA. The inverted
U-hypothesis of DA-ergic modulation, suggesting that there is an optimal level of DA-
ergic stimulation, with both too little and too much DA negatively impacting behavior,
supports this finding [42]. DA strengthens the connection between the Frontoparietal
Control Network (FPCN) and the DMN in the resting state where internal cognition domi-
nates, thus reducing the relation between the FPCN and the Dorsal Focus Network [40].
These connections reveal the important role of network interaction in the modulation of
attention [43].

The regions of the second brain signature that demonstrated the highest contribution
to the discriminative power of PC2 were localized in the left PP, bilateral Supplementary
Motor Cortex (SMC), bilateral MFC, left anterior and left posterior lingulate gyrus and
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right Frontal Pole (FP) along with subcortical structures such as bilateral amygdalae, left
hippocampus and left parahippocampal gyrus. The modalities that contributed to PC2
were the task-related and the resting state functional MRI. The regions of its brain signature
are nodes implicated in the effort-mode network and subcortical areas [44].

Effort-mode network/extrinsic mode network (EMN) is complementary to the DMN
in such a way that the EMN is down-regulated during task absence times, while the DMN
is up-regulated [45]. The EMN has basically a fronto–temporo–parietal spatial distribution,
including the inferior and middle frontal gyri, the inferior parietal lobule, the supplemen-
tary motor area, the inferior temporal gyrus. Network up- and down-regulation dynamics
dysfunction has been proposed to have neuronal implications for cognitive disability found
in many psychiatric disorders such as schizophrenia [45]. Since the DMN has been defined
as a mode of intrinsic neuronal activity [46], the EMN is a central network for extrinsic
neuronal activity [45].

The DMN exhibits activations in the medial and posterior regions, while EMN shows
activations in the lateral and anterior regions, but also in the frontal and parietal ar-
eas [47–49]. It is hypothesized that aberrant DMN activation could be a characteristic
feature for hallucinatory experiences [50]. Auditory hallucinations can be linked to ab-
normally elevated resting state activity in the auditory cortex itself, irregular modulation
of the auditory cortex by anterior cortical midline structures as part of the DMN, and
neural miscommunication between auditory cortical resting state shifts and stimulus
triggered activity [51]. Cognitive dysfunction and hypo-activation observed in patients
with schizophrenia, for example, when introduced to complicated cognitive tasks may be
due to inadequate interactive regulation of the DMN and EMN networks, rather than a
deficit with respect to a particular brain region [45]. Glutamate (Glu), Gama-amino-butyric-
acid (GABA) and other metabolites (Lactate, Aspartate, Glucose, etc.) play an important
role in mediating the activity of the brain during both stimulus-induced and “intrinsic
activity” [44].

The amygdala is also a significant zone in PC2. FMRI show anomalies within the
corticolimbic network, including the prefrontal cortex and ACC, insula, amygdala, hip-
pocampus and striatum [52]. All of this presents the dynamic, region- and circuit-specific
stress effects that could be significant for the disturbed connectivity recorded in depressed
patients [53]. There is a suggestion that persistent stress leads to hyperdopaminergic ac-
tivity in the mesolimbic system which presents as social decline and suicidal behavior.
In several studies it is demonstrated that hyper-responsiveness of the amygdala and re-
lated emotional regions of the brain is observed in people with schizophrenia [54] and
individuals at ultra-high risk (UHR) for psychosis [55], as well as in healthy people with
subclinical psychotic experiences. Amygdala hyper-responsiveness has been shown to in-
hibit GABAergic inter-neuron function in the hippocampus by direct projections, leading to
the disinhibition of pyramidal cells and, ultimately, to increased hippocampal activity [56].
In exchange, increased transmission from the hippocampus to the striatum was found to
facilitate the dysregulation of striatal dopamine which is typical in schizophrenia [57]. In
studies with ketamine administration to healthy controls GABA inhibition is observed,
reporting that ketamine decreases DMN connectivity and reduces reactivity of amygdala-
hippocampal circuity in response to emotional stimuli [58]. Other studies found increased
Glu concentrations across several corticolimbic areas in schizophrenic individuals [59].

The third component identified in our study (PC3) had opposite loads of the structural
and functional (both rest and task-related) modalities and was reflected in a brain signature
that involved regions localized in the left and right opercular part of the IFG, right supra-
marginal gyrus, left superior temporal gyrus, left anterior orbital gyrus, supplementary
motor cortex, and several occipital regions. Diffusion MRI and probabilistic tractography
have recently been used to demonstrate that there is greater tempo-parietal-insula connec-
tivity in the right as opposed to the left hemisphere [60]. Another tractography research
recorded that subcomponent III of the Superior Longitudinal Fasciculus, an association
fiber pathway that potentially interconnects the frontal with the parietal regions of the



Diagnostics 2021, 11, 19 14 of 17

Ventral Attention Network, is greater in the right compared to the left hemisphere [61].
These results provide an anatomical framework for the right-lateralized ventral attention
network involved in the salience detection. However, the implications for the functional
brain network remain unclear.

In summary resting state residual activations are detected mostly in the frontal seg-
ments of the DMN, which are predominantly dopaminergic [42], task related activations
yield mainly Glutamate/GABAergic subcortical network of hippocampus and amygdala,
which is consistent with other studies in the field [62], and structural alterations affect
the temporoparietal network [63]. In future studies, it will be necessary to examine these
correlations in more depth, as many of the patients we included in the sample had been
on stable antipsychotic drug therapy in previous weeks. The majority of antipsychotic
medications modulate the dopaminergic neurotransmission, so at the moment our results
in terms of central dopaminergic activity can be used to form hypotheses to be tested in
future projects. However, we do not fail to note the fact that our findings are consistent
with the data obtained so far in the field of translational fMRI neuroscience.

5. Conclusions

The present study was able to demonstrate that by means of MLM applied to mul-
timodal data sets including structural, task-related and resting state functional MRI of
patients with schizophrenia and depression meaningful brain signatures with high dis-
criminative value can be identified. The first signature reflected equal loadings of the
three imaging modalities which means that the regions included (PP, IFG, Insula, NAcc
etc.) have both structural and functional characteristics that can discriminate between the
two groups. The second signature encompassed regions that have high discriminative
power in the functional modalities i.e., task-related vs resting state fMRI and those regions
are part of the EMN and DMN, respectively. The third brain signature reflected opposite
loadings of the structural and functional imaging modalities and it is comprised mainly of
temporo-occipital and motor regions.

The limitations of our research are related to the heterogeneity of the study population
in terms of the two depression subgroups (unipolar and bipolar) and the novel design
of our paradigm, which contributed to difficulties in attempting to compare the results
with correlated research. An additional possible confound is the medication status of the
patients. Our intention is to explore the influence of medication on the brain signatures in
another study to follow. Such shortcomings may be overcome by expanding translational
neuroimaging studies through separate centers using a similar approach to detecting
the functional MRI substrate corresponding to the clinical self-assessment instruments in
replicative protocols implemented as well in unmedicated subjects.

Author Contributions: Conceptualization, D.S.; methodology, F.K. and D.S.; software, F.K. and A.L.;
validation, S.K.; formal analysis, F.K., S.K., and R.P.; investigation, K.A. and D.S.; resources, D.S.
and K.A.; data curation, F.K.; writing—original draft preparation, K.A., S.K., and D.S.; writing—
review and editing, A.T.-R., visualization, F.K. and A.L.; supervision, D.S. project administration,
D.S.; funding acquisition, D.S. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The Ethics Committee at Medical University of Plovdiv has
approved the protocol of the study on 29 May 2015 (ID: P-369/29.05.2015).

Informed Consent Statement: Before enrollment written informed consent complying with the
Declaration of Helsinki was obtained from each participant.

Data Availability Statement: Data is available upon request.

Acknowledgments: Cristina Ramponi, for her assistance in the data preprocessing.

Conflicts of Interest: The authors declare no conflict of interest.



Diagnostics 2021, 11, 19 15 of 17

References
1. Vigo, D.; Thornicroft, G.; Antun, R. Estimating the true global burden of mental illness. Lancet Psychiatry 2016, 3, 171–178.

[CrossRef]
2. World Health Organization. Management of Physical Health Conditions in Adults with Severe Mental Disorders: WHO Guidelines;

WHO: Geneva, Switzerland, 2018.
3. Hany, M.; Rehman, B.; Azhar, Y.; Chapman, J. Schizophrenia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020.
4. McIntyre, R.S.; O’Donovan, C. The human cost of not achieving full remission in depression. Can. J. Psychiatry 2004, 49 (Suppl. S1),

10S–16S. [PubMed]
5. Aryutova, K.; Kandilarova, S.; Todeva-Radneva, A.; Stoyanov, D. Clinical Use of Neurophysiological Biomarkers and Self-

Assessment Scales to Predict and Monitor Treatment Response for Psychotic and Affective disorders. Curr. Pharm. Des. in press.
6. Cuthbert, B.N. Research Domain Criteria: Toward future psychiatric nosologies. Dialogues Clin. Neurosci. 2015, 17, 89–97.

[CrossRef] [PubMed]
7. Cassano, G.B.; Rucci, P.; Stat, D.; Frank, E.; Fagiolini, A.; Dell’Osso, L.; Shear, M.K.; Kupfer, D.J. The Mood Spectrum in Unipolar

and Bipolar Disorder: Arguments for a Unitary Approach. Am. J. Psychiatry 2004, 161, 1264–1269. [CrossRef] [PubMed]
8. Schwarz, K.; Moessnang, C.; Schweiger, J.I.; Baumeister, S.; Plichta, M.M.; Brandeis, D.; Banaschewski, T.; Wackerhagen, C.; Erk, S.;

Walter, H.; et al. Transdiagnostic Prediction of Affective, Cognitive, and Social Function Through Brain Reward Anticipation
in Schizophrenia, Bipolar Disorder, Major Depression, and Autism Spectrum Diagnoses. Schizophr. Bull. 2020, 46, 592–602.
[CrossRef]

9. Cardoso de Almeida, J.R.; Phillips, M.L. Distinguishing between unipolar depression and bipolar depression: Current and future
clinical and neuroimaging perspectives. Biol. Psychiatry 2013, 73, 111–118. [CrossRef]

10. Zachar, P.; Stoyanov, S.D.; Aragona, M.; Jablensky, A. (Eds.) Alternative Perspectives on Psychiatric Validation: DSM, IDC, RDoC,
and Beyond; Oxford University Press: Oxford, UK, 2015.

11. Stoyanov, D.; Kandilarova, S.; Borgwardt, S.; Stieglitz, R.-D.; Hugdahl, K.; Kostianev, S. Psychopathology Assessment Methods
Revisited: On Translational Cross-Validation of Clinical Self-Evaluation Scale and fMRI. Front. Psychiatry 2018, 9. [CrossRef]

12. Stoyanov, D.; Kandilarova, S.; Arabadzhiev, Z.; Paunova, R.; Schmidt, A.; Borgwardt, S. Cross-Validation of Paranoid-Depressive
Scale and Functional MRI: New Paradigm for Neuroscience Informed Clinical Psychopathology. Front. Psychiatry 2019, 10.
[CrossRef]

13. Stoyanov, D.; Kandilarova, S.; Paunova, R.; Barranco Garcia, J.; Latypova, A.; Kherif, F. Cross-Validation of Functional MRI and
Paranoid-Depressive Scale: Results From Multivariate Analysis. Front. Psychiatry 2019, 10. [CrossRef]

14. Stoyanov, D.S. An Essay on the Mind-Brain Problem and Legal Proof. Balk. J. Philos. 2018, 10, 27–36. [CrossRef]
15. Specht, K. Current Challenges in Translational and Clinical fMRI and Future Directions. Front. Psychiatry 2020, 10. [CrossRef]

[PubMed]
16. Yang, H.; Liu, J.; Sui, J.; Pearlson, G.; Calhoun, V.D. A Hybrid Machine Learning Method for Fusing fMRI and Genetic Data:

Combining both Improves Classification of Schizophrenia. Front. Hum. Neurosci. 2010, 4. [CrossRef] [PubMed]
17. Hahn, T.; Marquand, A.F.; Ehlis, A.-C.; Dresler, T.; Kittel-Schneider, S.; Jarczok, T.A.; Lesch, K.-P.; Jakob, P.M.; Mourao-Miranda, J.;

Brammer, M.J.; et al. Integrating Neurobiological Markers of Depression. Arch. Gen. Psychiatry 2010, 68, 361. [CrossRef]
18. Castro, E.; Martínez-Ramón, M.; Pearlson, G.; Sui, J.; Calhoun, V.D. Characterization of groups using composite kernels and

multi-source fMRI analysis data: Application to schizophrenia. NeuroImage 2011, 58, 526–536. [CrossRef]
19. Sundermann, B.; Herr, D.; Schwindt, W.; Pfleiderer, B. Multivariate Classification of Blood Oxygen Level-Dependent fMRI Data

with Diagnostic Intention: A Clinical Perspective. Am. J. Neuroradiol. 2013. [CrossRef]
20. Sui, J.; He, H.; Yu, Q.; Chen, J.; Rogers, J.; Pearlson, G.D.; Mayer, A.; Bustillo, J.; Canive, J.; Calhoun, V.D. Combination of Resting

State fMRI, DTI, and sMRI Data to Discriminate Schizophrenia by N-way MCCA + jICA. Front. Hum. Neurosci. 2013, 7. [CrossRef]
21. Kalcher, K.; Boubela, R.N.; Huf, W.; Biswal, B.B.; Baldinger, P.; Sailer, U.; Filzmoser, P.; Kasper, S.; Lamm, C.; Lanzenberger, R.;

et al. RESCALE: Voxel-specific task-fMRI scaling using resting state fluctuation amplitude. NeuroImage 2013, 70, 80–88. [CrossRef]
22. Gao, S.; Calhoun, V.D.; Sui, J. Machine learning in major depression: From classification to treatment outcome prediction.

CNS Neurosci. Ther. 2018, 24, 1037–1052. [CrossRef]
23. Worsley, K.J.; Poline, J.-B.; Friston, K.J.; Evans, A.C. Characterizing the Response of PET and fMRI Data Using Multivariate Linear

Models. NeuroImage 1997, 6, 305–319. [CrossRef]
24. Kawasaki, Y.; Suzuki, M.; Kherif, F.; Takahashi, T.; Zhou, S.-Y.; Nakamura, K.; Matsui, M.; Sumiyoshi, T.; Seto, H.; Kurachi, M.

Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls. NeuroImage 2007,
34, 235–242. [CrossRef] [PubMed]

25. Kherif, F.; Poline, J.-B.; Flandin, G.; Benali, H.; Simon, O.; Dehaene, S.; Worsley, K.J. Multivariate Model Specification for fMRI
Data. NeuroImage 2002, 16, 1068–1083. [CrossRef]

26. Sheehan, D.V.; Lecrubier, Y.; Sheenan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The
Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric
interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59 (Suppl. S20), 22–33. [PubMed]

27. Montgomery, S.A.; Asberg, M. A new depression scale designed to be sensitive to change. Br. J. Psychiatry 1979, 134, 382–389.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/S2215-0366(15)00505-2
http://www.ncbi.nlm.nih.gov/pubmed/15147032
http://dx.doi.org/10.1016/j.ajp.2013.12.007
http://www.ncbi.nlm.nih.gov/pubmed/25987867
http://dx.doi.org/10.1176/appi.ajp.161.7.1264
http://www.ncbi.nlm.nih.gov/pubmed/15229060
http://dx.doi.org/10.1093/schbul/sbz075
http://dx.doi.org/10.1016/j.biopsych.2012.06.010
http://dx.doi.org/10.3389/fpsyt.2018.00021
http://dx.doi.org/10.3389/fpsyt.2019.00711
http://dx.doi.org/10.3389/fpsyt.2019.00869
http://dx.doi.org/10.5840/bjp20181014
http://dx.doi.org/10.3389/fpsyt.2019.00924
http://www.ncbi.nlm.nih.gov/pubmed/31969840
http://dx.doi.org/10.3389/fnhum.2010.00192
http://www.ncbi.nlm.nih.gov/pubmed/21119772
http://dx.doi.org/10.1001/archgenpsychiatry.2010.178
http://dx.doi.org/10.1016/j.neuroimage.2011.06.044
http://dx.doi.org/10.3174/ajnr.A3713
http://dx.doi.org/10.3389/fnhum.2013.00235
http://dx.doi.org/10.1016/j.neuroimage.2012.12.019
http://dx.doi.org/10.1111/cns.13048
http://dx.doi.org/10.1006/nimg.1997.0294
http://dx.doi.org/10.1016/j.neuroimage.2006.08.018
http://www.ncbi.nlm.nih.gov/pubmed/17045492
http://dx.doi.org/10.1006/nimg.2002.1094
http://www.ncbi.nlm.nih.gov/pubmed/9881538
http://dx.doi.org/10.1192/bjp.134.4.382
http://www.ncbi.nlm.nih.gov/pubmed/444788


Diagnostics 2021, 11, 19 16 of 17

28. Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987, 13,
261–276. [CrossRef]

29. Radua, J.; Phillips, M.L.; Russell, T.; Lawrence, N.; Marshall, N.; Kalidindi, S.; El-Hage, W.; Mcdonald, C.; Giampietro, V.;
Brammer, M.; et al. Neural response to specific components of fearful faces in healthy and schizophrenic adults. NeuroImage 2010,
49, 939–946. [CrossRef]

30. Adolphs, R. Is the human amygdala specialized for processing social information? Ann. N. Y. Acad. Sci. 2003, 985, 326–340.
[CrossRef]

31. Kasai, K.; Shenton, M.E.; Salisbury, D.F.; Hirayasu, Y.; Lee, C.-U.; Ciszewski, A.A.; Yurgelun-Todd, D.; Kikinis, R.; Jolesz,
F.A.; McCarley, R.W. Progressive decrease of left superior temporal gyrus gray matter volume in patients with first-episode
schizophrenia. Am. J. Psychiatry 2003, 160, 156–164. [CrossRef]

32. Rajarethinam, R.P.; DeQuardo, J.R.; Nalepa, R.; Tandon, R. Superior temporal gyrus in schizophrenia: A volumetric magnetic
resonance imaging study. Schizophr. Res. 2000, 41, 303–312. [CrossRef]

33. Kühn, S.; Gallinat, J. Quantitative Meta-Analysis on State and Trait Aspects of Auditory Verbal Hallucinations in Schizophrenia.
Schizophr. Bull. 2012, 38, 779–786. [CrossRef]

34. Modinos, G.; Costafreda, S.G.; van Tol, M.-J.; McGuire, P.K.; Aleman, A.; Allen, P. Neuroanatomy of auditory verbal hallucinations
in schizophrenia: A quantitative meta-analysis of voxel-based morphometry studies. Cortex 2013, 49, 1046–1055. [CrossRef]

35. Allen, P.; Larøi, F.; McGuire, P.K.; Aleman, A. The hallucinating brain: A review of structural and functional neuroimaging studies
of hallucinations. Neurosci. Biobehav. Rev. 2008, 32, 175–191. [CrossRef] [PubMed]

36. Schremm, A.; Novén, M.; Horne, M.; Söderström, P.; van Westen, D.; Roll, M. Cortical thickness of planum temporale and pars
opercularis in native language tone processing. Brain Lang. 2018, 176, 42–47. [CrossRef] [PubMed]

37. Tops, M.; Boksem, M.A.S. A Potential Role of the Inferior Frontal Gyrus and Anterior Insula in Cognitive Control, Brain Rhythms,
and Event-Related Potentials. Front. Psychol. 2011, 2. [CrossRef]

38. Tops, M.; Boksem, M.A.S. Cortisol involvement in mechanisms of behavioral inhibition. Psychophysiology 2011, 48, 723–732.
[CrossRef]

39. Wu, J.C. Sleep deprivation PET correlations of Hamilton symptom improvement ratings with changes in relative glucose
metabolism in patients with depression. J. Affect. Disord. 2008, 107, 181–186. [CrossRef] [PubMed]

40. Britt, J.P.; Benaliouad, F.; McDevitt, R.A.; Stuber, G.D.; Wise, R.A.; Bonci, A. Synaptic and Behavioral Profile of Multiple
Glutamatergic Inputs to the Nucleus Accumbens. Neuron 2012, 76, 790–803. [CrossRef]

41. Rowley, H.L.; Kulkarni, R.S.; Gosden, J.; Brammer, R.J.; Hackett, D.; Heal, D.J. Differences in the neurochemical and behavioural
profiles of lisdexamfetamine methylphenidate and modafinil revealed by simultaneous dual-probe microdialysis and locomotor
activity measurements in freely-moving rats. J. Psychopharmacol. 2013. [CrossRef]

42. Schrantee, A.; Ferguson, B.; Stoffers, D.; Booij, J.; Rombouts, S.; Reneman, L. Effects of dexamphetamine-induced dopamine
release on resting-state network connectivity in recreational amphetamine users and healthy controls. Brain Imaging Behav. 2016,
10, 548–558. [CrossRef]

43. Dang, L.C.; O’Neil, J.P.; Jagust, W.J. Dopamine Supports Coupling of Attention-Related Networks. J. Neurosci. 2012, 32, 9582–9587.
[CrossRef]

44. Duncan, N.W.; Wiebking, C.; Northoff, G. Associations of regional GABA and glutamate with intrinsic and extrinsic neural
activity in humans—A review of multimodal imaging studies. Neurosci. Biobehav. Rev. 2014, 47, 36–52. [CrossRef] [PubMed]

45. Hugdahl, K.; Raichle, M.E.; Mitra, A.; Specht, K. On the existence of a generalized non-specific task-dependent network.
Front. Hum. Neurosci. 2015, 9. [CrossRef] [PubMed]

46. Raichle, M.E. The restless brain: How intrinsic activity organizes brain function. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370,
20140172. [CrossRef]

47. Eichele, T.; Debener, S.; Calhoun, V.D.; Specht, K.; Engel, K.A.; Hugdahl, K.; von Cramon, Y.; Ullsperger, M. Prediction of human
errors by maladaptive changes in event-related brain networks. Proc. Natl. Acad. Sci. USA 2008, 105, 6173–6178. [CrossRef]
[PubMed]

48. Løberg, E.-M.; Nygård, M.; Øystein Berle, J.; Johnsen, E.; Kroken, R.A.; Jørgensen, H.A.; Hugdahl, K. An fMRI Study of Neuronal
Activation in Schizophrenia Patients with and without Previous Cannabis Use. Front. Psychiatry 2012, 3. [CrossRef]

49. Nygård, M.; Eichele, T.; Løberg, E.-M.; Jørgensen, H.A.; Johnsen, E.; Kroken, R.A.; Øystein Berle, J.; Hugdahl, K. Patients with
Schizophrenia Fail to Up-Regulate Task-Positive and Down-Regulate Task-Negative Brain Networks: An fMRI Study Using an
ICA Analysis Approach. Front. Hum. Neurosci. 2012, 6. [CrossRef]

50. van Lutterveld, R.; Diederen, K.M.J.; Otte, W.M.; Sommer, I.E. Network analysis of auditory hallucinations in nonpsychotic
individuals. Human Brain Mapp. 2014, 35, 1436–1445. [CrossRef]

51. Hugdahl, K.; Løberg, E.-M.; Nygård, M. Left temporal lobe structural and functional abnormality underlying auditory hallucina-
tions. Front. Neurosci. 2009, 3. [CrossRef]

52. Phillips, L.K.; Seidman, L.J. Emotion Processing in Persons at Risk for Schizophrenia. Schizophr. Bull. 2008, 34, 888–903. [CrossRef]
53. Duman, R.S.; Sanacora, G.; Krystal, J.H. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits

and Reversal by Novel Treatments. Neuron 2019, 102, 75–90. [CrossRef]
54. Donaldson7.pdf. Available online: https://dspace.stir.ac.uk/bitstream/1893/2389/1/Donaldson7.pdf (accessed on 27 Novem-

ber 2020).

http://dx.doi.org/10.1093/schbul/13.2.261
http://dx.doi.org/10.1016/j.neuroimage.2009.08.030
http://dx.doi.org/10.1111/j.1749-6632.2003.tb07091.x
http://dx.doi.org/10.1176/appi.ajp.160.1.156
http://dx.doi.org/10.1016/S0920-9964(99)00083-3
http://dx.doi.org/10.1093/schbul/sbq152
http://dx.doi.org/10.1016/j.cortex.2012.01.009
http://dx.doi.org/10.1016/j.neubiorev.2007.07.012
http://www.ncbi.nlm.nih.gov/pubmed/17884165
http://dx.doi.org/10.1016/j.bandl.2017.12.001
http://www.ncbi.nlm.nih.gov/pubmed/29223785
http://dx.doi.org/10.3389/fpsyg.2011.00330
http://dx.doi.org/10.1111/j.1469-8986.2010.01131.x
http://dx.doi.org/10.1016/j.jad.2007.07.030
http://www.ncbi.nlm.nih.gov/pubmed/18031825
http://dx.doi.org/10.1016/j.neuron.2012.09.040
http://dx.doi.org/10.1177/0269881113513850
http://dx.doi.org/10.1007/s11682-015-9419-z
http://dx.doi.org/10.1523/JNEUROSCI.0909-12.2012
http://dx.doi.org/10.1016/j.neubiorev.2014.07.016
http://www.ncbi.nlm.nih.gov/pubmed/25066091
http://dx.doi.org/10.3389/fnhum.2015.00430
http://www.ncbi.nlm.nih.gov/pubmed/26300757
http://dx.doi.org/10.1098/rstb.2014.0172
http://dx.doi.org/10.1073/pnas.0708965105
http://www.ncbi.nlm.nih.gov/pubmed/18427123
http://dx.doi.org/10.3389/fpsyt.2012.00094
http://dx.doi.org/10.3389/fnhum.2012.00149
http://dx.doi.org/10.1002/hbm.22264
http://dx.doi.org/10.3389/neuro.01.001.2009
http://dx.doi.org/10.1093/schbul/sbn085
http://dx.doi.org/10.1016/j.neuron.2019.03.013
https://dspace.stir.ac.uk/bitstream/1893/2389/1/Donaldson7.pdf


Diagnostics 2021, 11, 19 17 of 17

55. Modinos, G.; Tseng, H.-H.; Falkenberg, I.; Samson, C.; McGuire, P.; Allen, P. Neural correlates of aberrant emotional salience
predict psychotic symptoms and global functioning in high-risk and first-episode psychosis. Soc. Cogn. Affect. Neurosci. 2015, 10,
1429–1436. [CrossRef] [PubMed]

56. Zimmerman, E.C.; Bellaire, M.; Ewing, S.G.; Grace, A.A. Abnormal Stress Responsivity in a Rodent Developmental Disruption
Model of Schizophrenia. Neuropsychopharmacology 2013, 38. [CrossRef] [PubMed]

57. Lodge, D.J.; Grace, A.A. Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia.
Trends Pharmacol. Sci. 2011, 32, 507–513. [CrossRef] [PubMed]

58. Evans, J.W.; Szczepanik, J.; Brutsché, N.; Park, L.T.; Nugent, A.C.; Zarate, C.A. Default Mode Connectivity in Major Depressive
Disorder Measured Up to 10 Days After Ketamine Administration. Biol. Psychiatry 2018, 84, 582–590. [CrossRef] [PubMed]

59. Marsman, A.; van den Heuvel, M.P.; Klomp, D.W.J.; Kahn, R.S.; Luijten, P.R.; Hulshoff Pol, H.E. Glutamate in Schizophrenia: A
Focused Review and Meta-Analysis of 1H-MRS Studies. Schizophr. Bull. 2013, 39, 120–129. [CrossRef]

60. Kucyi, A.; Moayedi, M.; Weissman-Fogel, I.; Hodaie, M.; Davis, K.D. Hemispheric asymmetry in white matter connectivity of the
temporoparietal junction with the insula and prefrontal cortex. PLoS ONE 2012, 7, e35589. [CrossRef]

61. de Schotten, M.T.; Dell’Acqua, F.; Forkel, S.J.; Simmons, A.; Vergani, F.; Murphy, D.G.M.; Catani, M. A lateralized brain network
for visuospatial attention. Nat. Neurosci. 2011, 14, 1245–1246. [CrossRef]

62. Lener, M.S.; Niciu, M.J.; Ballard, E.D.; Park, M.; Park, L.T.; Nugent, A.; Zarate, C.A., Jr. Glutamate and GABA Systems in the
Pathophysiology of Major Depression and Antidepressant Response to Ketamine. Biol. Psychiatry 2017, 81, 886–897. [CrossRef]

63. Graziano, M.S.A. The temporoparietal junction and awareness. Neurosci. Conscious. 2018, 2018. [CrossRef]

http://dx.doi.org/10.1093/scan/nsv035
http://www.ncbi.nlm.nih.gov/pubmed/25809400
http://dx.doi.org/10.1038/npp.2013.110
http://www.ncbi.nlm.nih.gov/pubmed/23652286
http://dx.doi.org/10.1016/j.tips.2011.05.001
http://www.ncbi.nlm.nih.gov/pubmed/21700346
http://dx.doi.org/10.1016/j.biopsych.2018.01.027
http://www.ncbi.nlm.nih.gov/pubmed/29580569
http://dx.doi.org/10.1093/schbul/sbr069
http://dx.doi.org/10.1371/journal.pone.0035589
http://dx.doi.org/10.1038/nn.2905
http://dx.doi.org/10.1016/j.biopsych.2016.05.005
http://dx.doi.org/10.1093/nc/niy005

	Introduction 
	Materials and Methods 
	Participants 
	Image Acquisition 
	fMRI Task 
	MRI Data Analysis 
	Voxel-Based Morphometry 
	Task-Related Functional Data Processing 
	Resting State Data Processing—Whole Brain Residual Partial Activations 
	MLM Analysis 

	Statistical Analysis 

	Results 
	Demographic and Clinical Characteristics 
	MLM Analysis 
	Modality Specific MLM 
	MLM Analyses across the Modalities 


	Discussion 
	Conclusions 
	References

