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ABSTRACT 

Given a complete graph with edge-weights satisfying parameterized triangle inequality, we consider the maximum-
Hamilton path problem and design some approximation algorithms. 
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1. Introduction 

Routing design problems are of a major importance in-
computer communications and combinatorial optimiza-
tion. The traveling salesman problem (TSP) and related 
Hamilton path problem play important role in routing 
design problems. Recently, some novel approximation 
algorithms and randomized algorithms are designed for 
these problems. 

Let  bea complete graph in which the 
edge weights satisfy 

 , ,G V E w 
( ) ( ( ) ( ))w uv w ux w xv  

V
 for all 

distinct nodes , the maximum Hamilton path 
problem(MHP) with 

, ,u x v
  -parameterized triangle inequal-

ity is to find a path with maximum weight that visits each 
node exactly once. 

A cycle cover is a subgraph in which each vertex in V 
has a degree of exactly 2. A maximum cycle cover is one 
with maximum total edge weight which can be computed 
in  time [4]. It is well-known that the weight of 
the maximum cycle cover is an upper bound on , 
where  denotes the weight of an optimal Hamilton 
path (or tour). All the algorithms mentioned in this paper 
start by constructing a maximum-weight cycle cover. A 
subtour in this paper is a subgraph with no 
non-Hamiltonian cycles or vertices of degree greater than 
2. Thus by adding edges to a subtour it can be completed 
to a tour. In this paper, for asubset ,  
denotes the (expected) total weight of the edges in . 
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We call that an algorithm is a  -approximation algo-
rithm for the MHP if it always produces a feasible solu-
tion with objective at least OPT , where OP  de-
notes the optimal value. 

T

When 1  , Monnot [10] presented a 1/ -ap- 

proximation algorithm for the MHP with two specified 
endpoints and a  -approximation algorithm for the 
MHP with one specified end point. To the best of 
knowledge, this is the unique result about MHP. 

2

2 / 3

In this paper, we first present a deterministic approxi-  

Mation algorithm with performance ratio 
4 1 1

6 2n


 


   

For the MHP without specified endpoint, and a random-  

Ized algorithm with expected ratio 
3

1
3 12

4
O

n





 
 
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
  by 

Modifying the algorithm in [7], where n is the number of 
vertices in G. We also present a determinant approxima-  

tion algorithm with performance ratio 
4 1

6





 for the 

M H P  
with one specified end point, which improves the result 
in [10]. 

A closely related problem is the maximum traveling 
salesman problem (MTSP) with   -parameterized trian-
gleine quality which is to find a tour with maximum 
weight that visits each node exactly once in a complete 
graph in which the edge weights satisfy 
 -parameterized triangle in equality. Zhang, Yin, and Li 
[14] introduced the MTSP with   -parameterized trian-
gle inequality for 

1
[ ,1)
2

  , motivated by the minimum traveling salesman  

problem with  -parameterized triangle inequality in 
[13]. They firstcompute a maximum-weight cycle cover 

1 l{ , ,. . .,C }C , and then delete the minimum-weight 
of the edges in  and extend the remained paths to a iC
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Hamiltonian cycle. They [14] proved that the perform-  

ance ratio of their algorithm is 
1 2K

K

 


 
 , where 

 min | 1, 2, ,iK C i l   . Since 3iC   for the cycle 

cover of undirected graph, the ratio is at least 
1

3





. 

Notice that the MTSP wit    h -parameterized trian-

gle inequality is a special case of the maximum TSP 
which is first considered by Fisher, Nemhauser and 
Wolsey [3], where two approximation algorithms are 
given. In 1984, Serdyukov[12] presented (in Russian) an 

elegant 
3

4
- approximation algorithm. Afterwards, Has 

sin and Rubinstein [6] presented a randomized algorithm 

whose expected approximation ratio is at least 
 25 1

33 32







, 

where   is an arbitrarily small constant. Chen, Oka-
moto, and Wang [2] first gave a deterministic approxi-

mation algorithm with the ratio better than 
3

4
, which is a 

61

81
- approximation and a nontrivial derandomization of 

the algorithm from [6]. Very recently, Paluch, Mucha, 
and Madry [11] first presented a fast deterministic 
7

9
-approximation algorithm for the maximum TSP, 

which isthe currently best result. 

If 1  , the MTSP with  -parameterized triangle in 
equality is exactly the metric maximum TSP. Kostochka 

and Serdyukov [7] first designed a 
5

6
-approximation  

algorithm for the metric maximum TSP. Hassin and 
Rubinstein [5]designed a randomized approximation al-
gorithm for themetric maximum TSP whose expected  

approximation ratio is 
3

7 1

8
O

n

 
 

 
 , where n is the num-  

ber of vertices in the graph. This algorithm had later been 
derandomized by Chen and Nagoya [1], at a cost of a  

slightly worse approximation factor of 
3

7 1

8
O

n

 
  

 
. 

Very recently, Kowalik and Mucha [9] extended the ap-
proach of processing local configuration susing so-called  

loose-ends in [8], and presented a deterministic 
7

8
-ap-  

proximation algorithm for the metric maximum TSP, 
which is the currently best result. 

The paper is divided into four sections. In Section 2, 
we will present some algorithms for the MHP problem-

without specified endpoint. In Section 3, we will presen-
tan algorithms for the MHP problem with one specified 
end point. The paper is concluded in the last section. 

 
2. The MHP Problem without Specified  

Endpoint 

2.1. Modified Randomized Kostochka & Ser-
dyukov’s Algorithm 

In [5], Hassin and Rubinstein gave a randomized algo-
rithm the maximum TSP [7]. We modify it to the MHP 
problem. 

Algorithm A0: 
1. Compute a maximum cycle cover 

 1 2, ,. . ., lC C C . 

Without loss of generality, we assume that  satisfies 1C

   1

1

i

i

w Cw C

C C
  for any 1, 2,. . ., 1i l  . 

2. Delete from each cycle a random edge. Let  and 
 be the ends of the path  that results from . 

iu

iCiv iP
3. Give each path a random orientation and form a 

Hamilton path HP

iP
 by adding connecting edges be-

tween the head of  and thetail of ,  1iP

1, 2,. . ., 1i l  . 

Theorem 1. For any 
1

2
  , the expected approxima-  

Tion ratio of Algorithm A0 for the MHP problem is 

4 1 1

6 2
OPT

n


 

 
 

 
. 

Proof. Clearly, 
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Here, the first inequality follows from the  -param- 
eterized triangle inequality, the second inequality follows  

from the assumption that  satisfies 1C
   1

1

i

i

w Cw C

C C
 ,  

and the last inequality follows from . This com- 3K 
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pletes the proof. It is well-known that ove random-
ized version of Kostochka & Serdyukov’s algorithm can 
easily be derandomized by the standard method of condi-
tional expectation. 
 

the ab

.2. Modified Hassin & Rubinstein’s Algorithm 

-

aximum-weight cycle cover 

weight matching M in G. 
hat-

bo

2

Based on Serdyukov’s algorithm in [12] and the ran
domization version of Kostochka & Serdyukov’s algo-
rithm, Hassin and Rubinstein [5] presented a new algo-
rithm for the maximum TSP problem. We modify it to 
the MHP problem. 

Algorithm B0: 
1) Compute a m
 1 2, ,. . ., lC C C  of G. 

ximum-


2) Compute a ma
3) For 2,. . .,i s , identify , ie f E C   such t
th { }M e  and  { }M f  ar  Randomly 

choos , }
e subtours.

e {g e
{ }g  and 

f  (e h probability 1/ 2 ). Set 

i iP C  { }
ach wit

M M g  . 
e P T4) Complet

l

 
1

i
irithm

into a tour  as in Kost1

od

ochka & 
Se

d n es of paths in M. 
C

rdyukov’s algo  [7]. 
5) Let   S be the  set of en

ompute a perfect matching Srandom M  over S. Delete 
an edge from each cycle in SM M rbitrarily com-
plete S

. A
M M  into a tour 2T

6) L he maximum w
. 

- eightet T be t ed tour between
an

 1T  
d 2T  and e be the lightest edge in T, output the Ham-

ilton path { }HP T e  . 

Theorem 2. n For a y 
1

[ , )
2

   , the expected 

w  by the Height of the tour T returned assin & Rubin-
stein’s algorithm[5] for the maximum TSP with  -pa- 
rameterized triangle inequality satisfies 

 
1 3 12 .

4
w T O OPT

n





  
   

   
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Proof. Denote by   
di

the relative weight in C of the 

 

], we obtain

edges that were can dates for deletion. Let 'OPT  de-
note the value of the maximum-weighted Ham ycle.
Clearly, 'OPT OPT . Similarly to the proof of Theo-
rem 1 in [5  

ilton c

     
'

1

4 1 21 
1

2 2 2 4
w T w OPT

  
 

 
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 

  

Also, we have 

.
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1

4
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S

S
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  


  
  
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'
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Thus, 
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3w w 12        .

2 4

T T T

T T
O OP

n







    
    

   
 

T
 

As e is the lightest edge in T, we have 

   

'
3

3
      

1
1 w

1
31 12          1

4

1
3 12 .   

4
 

w HP T
n

O OP
n n
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


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 
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 
   

   
   

 

T

1

 

Based on the idea of Chen et al. [2] and the properti-
esof a folklore partition of the edges of a 2n-vertex com-

plete undirected graph into 2  perfect matchings, 

Chen and Nagoya [1] derandomize Hassin & Rubin-
stein’s algorithm mat a cost of a slightly worse approxi-

mation factor of 

n 

3

7 1 
 .

8
 Similarly to [1], we obtain 

the following theorem. 

O
n


 

 

Theorem 3. For any 
1

2
  , there is a deterministic  

Algorithm for the maximum TSP with   -parameterized 
triangle inequality with approximation ratio of  

3

1
3 12

4
O

n





  
  

 
. 

3. The Mhp Problem with One Specified 
Endpoint 

Let i be the specified endpoint. The MHP problem with 
one specified endpoint is to find a maximum- weighted 
Hamilton path starting from s. Our algorithm is based on 
computing cycle cover containing the special  

w

w M M w




 





 
   
 





 edge
 ,s r  for { }V s each r  . We find 1n   feasible 
solutions and output the best one. The detailed algo-
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rithms are presents as follows. 



Algorithm A1: 
1) For each  compute a maximum cycle 

cover 
r

 containing the edge 
{ }r V s  ,

 1 2, ,. . .,r r
lC C Crr   ,s r . 

Assume that  contains 1
rC ,s r  and  , 0w s r  . 

2) Delete a minimum weight edge from each cycle 
, for , and the edge r

iC 2,. . ., ri  l  ,s r

iP
 from 1 . Let 

 and iv  bethe ends of the path  that results from 
, where  and v r . 

rC

iu

iC 1u s
2l 

1

3) If , construct two Hamilton paths as follows: 


r

1 1 2 2 2

2 1 2 2 2

: ,

: .

HP sPru P v

HP sPrv P u
 

If , construct four Hamilton paths as follows. 3rl 

1 1 2 2 2 3 3 3

2 1 2 2 2 3 3 3

: ,

: .
r r r

r r r

l l l

l l l

HP sPru P v u P v u P v

HP sPrv P u v P u v P u




 

When l is odd, 

3 1 2 2 2 3 3 3

4 1 2 2 2 3 3 3

:

: .
r r r

r r r

l l l

l l l

,HP sPrv P u u P v u P v

HP sPru P v v P u v P u




 

When l is even, 

3 1 2 2 2 3 3 3

4 1 2 2 2 3 3 3

: ,

:
r r r

r r r

l l l

l l l .

HP sPrv P u u P v v P u

HP sPru P v v P u u P v




 

4) Compute a maximum-weighted Hamilton path 
rHP
2rl 
 in  where , if 
. 

 | 1, 2,3, 4iHP i  3 4HP HP  

5. Output a maximum-weighted Hamilton path HP in 
  |rHP r V s  . 

Lemma 4. For each , the objective value  r V s 

of rHP  is at least  4 1
6

rw



 . 

Proof. If , we have 2rl 

   
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2 2 , ,

1
2 2 ,

1
2 2 ,

1
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4 1
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3

r

r
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r

r

w HP w HP

w P w P w r u w r v

w P w P w u v

w w u v

w C
w

C

w











   

  

 
   

 
 
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 










2

 

Thus, 

       1 2 4 1
.

2 6
r

w P w P
w HP w




 
  

If , we have 3rl 

r



 

 

     

       

   

   

4

1

2 2
1

1

1 1 1
2

1 2

2

4 2 , 2 ,

  , , , ,

2
4 ,

2
4 4 ,

r

r

r r

r

i
i

l

i
i

l

i i i i i i i i
i

l l

i i i
i i

l
r

i i
i

w HP

w P w r u w r v

w u u w u v w v u w v v

w P w u v

w w u v










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

 



  

   

 

 
   
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
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 
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 8 2
,

3
rw





   

where the second inequality follows from 
1

2
  , and 

the last inequality follows from  and 3K 
 w OP T . Therefore, 

     
4

1

1 4 1
.

4 6
r r

i
i

w HP w HP w




    

This completes the proof. 
Theorem 5. The weight of the Hamilton path HP is at 

least 
4 1

6
 OPT




. 

Proof. Since HP is the maximum-weighted Hamilton 
pathin   |rHP r V s  , we have 

 
 

 

 
 

max

4 1
         max

6

4 1
         ,

6

r

r V s

r

r V s

w HP  w HP

w

OPT







 

 







  

where the second inequality follows from Lemma 4, and 
thelast inequality follows from the fact 

 { }max r
r V s w    isan obvious upper bound on .  OPT

4. Conclusions 

In this paper, we presented some approximation algo-
rithms for two variants of the maximum Hamilton path 
problem with parameterized triangle inequality. It is in-
teresting to design some better approximation algorithms 
for these problems. 
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