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Simple Summary: Breast cancer is the leading cause of female cancer-related deaths worldwide. New
technologies with enhanced sensitivity and specificity for early diagnosis and tailored monitoring
are in critical demand. Thus, metabolomics appears to be a growing tool in order to detect molecular
differences between distinct groups. In this case, an untargeted analytical approach was used to
identify metabolomics differences between molecular subtypes of breast cancer in comparison with
healthy matched controls. Footprints for each breast cancer subtype provided diagnostic capacities
with an area under the receiver-operating characteristic curve above 0.85, which suggests that our
results may represent a major advance towards the improvement of personalized medicine and
precise targeted therapies for the various breast cancer phenotypes. To validate these molecular
profiling as potential therapeutic strategies for the different breast cancer subtypes, further analysis
and larger cohorts would be necessary in the near future.

Abstract: Purpose: The aim of this study is to identify differential metabolomic signatures in plasma
samples of distinct subtypes of breast cancer patients that could be used in clinical practice as
diagnostic biomarkers for these molecular phenotypes and to provide a more individualized and
accurate therapeutic procedure. Methods: Untargeted LC-HRMS metabolomics approach in positive
and negative electrospray ionization mode was used to analyze plasma samples from LA, LB, HER2+
and TN breast cancer patients and healthy controls in order to determine specific metabolomic profiles
through univariate and multivariate statistical data analysis. Results: We tentatively identified altered
metabolites displaying concentration variations among the four breast cancer molecular subtypes.
We found a biomarker panel of 5 candidates in LA, 7 in LB, 5 in HER2 and 3 in TN that were able to
discriminate each breast cancer subtype with a false discovery range corrected p-value < 0.05 and a
fold-change cutoff value > 1.3. The model clinical value was evaluated with the AUROC, providing
diagnostic capacities above 0.85. Conclusion: Our study identifies metabolic profiling differences in
molecular phenotypes of breast cancer. This may represent a key step towards therapy improvement
in personalized medicine and prioritization of tailored therapeutic intervention strategies.

Keywords: human plasma metabolomics; breast cancer; molecular subtypes; metabolic profiling;
personalized medicine
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1. Introduction

Breast cancer (BC) is currently the most common malignancy in women, both in
developed and less developed countries, and the leading cause of cancer-related deaths
among women worldwide, with a high incidence rate [1,2]. Every breast cancer subtype is
characterized by intrinsic molecular features and metastatic lesions, and their natural het-
erogeneity leads to a high diversity in prognosis and clinical responses to available medical
treatments, even for patients with similar diagnosis, histology and stage of disease [3–9].

Therefore, determining the molecular subtypes of breast cancer becomes crucial
for personalized treatment. In fact, there is evidence reporting that patients receiving
molecular-matched therapy have an increased overall response rate, longer period of time
to treatment failure and a longer survival rate in comparison to patients with non-matched
therapy [3,9]. Successive biopsy procedures and subsequent histopathological analysis
are normally used to study molecular and genetic information from tumor cells in order
to diagnose and classify BC into a subtype. This analytical technique is invasive and
time consuming [3]. Thus, non-invasive, fast, sensible and precise analytical methods for
distinction of different BC subtypes are in critical demand [10,11].

In this sense, metabolomics has quickly arisen as a novel approach in the cancer
biomarker field to overcome the current limitations of standard diagnostic techniques [12].
This expanding research area provides a dynamic portrait of an individual overall metabolic
status, assessing the final products of the myriad of intrinsic molecular processes and
intercellular pathways that may be altered in response to genetic, pathological and/or
environmental factors [3,13]. Hence, the end products of the diverse biological processes
known as metabolites can be analyzed from high-throughput screening technologies
such as nuclear magnetic resonance (NMR) and mass spectrometry (MS) enabling the
discovery of altered pathways that may give us new insights into dysregulated metabolism
in tumor development and progression. Therefore, the altered metabolites reflecting these
pathophysiological changes might be considered as potential new therapeutic targets for
breast cancer diagnosis, prognosis, early recurrence and drug efficacy [14–16].

Several studies have already been conducted to explore the possibility of using metabo-
lite panels as biomarkers for early diagnosis, tumor characterization and clinical outcome
prediction [3,14–20]. Human body fluids such as saliva, urine, serum and plasma have
been re-discovered as a great source of potential biological markers, and hence analyzed
in the search of a metabolic profile that may be representative of systemic metabolic dys-
regulation in breast cancer patients [19–23]. However, up to today, efforts on proving
highly accurate markers or proven targets for tailored therapeutic treatments have not yet
delivered the expected results [24–28] due to the high heterogeneity displayed by breast
cancer, from histology to prognosis, early recurrence, risk of metastatic progression or
response to treatment and survival rates [29].

With this aim in view, we explore whether metabolomics is able to provide an accurate
pathological diagnosis, phenotypic classification and a tailored follow-up of individuals
with this malignancy. A high-throughput untargeted metabolic approach was used to
identify the capacity of different metabolic profiles to predict various BC subtypes. Based
on a liquid chromatography-mass spectrometry (HPLC/Q-TOF 5600) platform-based
metabolomics study, we propose and test the notion that a differential metabolic signature
representative of the distinct breast cancer subtypes exists, and it can be ultimately detected
in plasma of individuals with this disease.

2. Results
2.1. Patients’ Characteristics

To avoid the effect of potential confounding variables like age and Body Mass Index
(BMI), the homogeneity of BC group and its corresponding HC subjects was evaluated.
Normality’s distribution was checked with a Shapiro-Wilk normality test and the equality
of variances of both study groups was studied with the Levene´s test when corresponded.
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Finally, the appropriated t test was applied without significant differences observed in
any case.

2.2. LC-HRMS Analysis

Four different liquid chromatography-high resolution mass spectrometry (LC-HRMS)
analyses were carried out for each ionization mode, in order to determine the molecular
differences between the major subtypes of breast cancer (luminal A (LA), luminal B (LB),
triple negative (TN) and human growth factor receptor 2 positive (HER2) and the healthy
control (HC) groups. The reverse phase (RP) column is recommended for the separation
of medium-polar metabolites (such as phospholipids, lysophospholipids or steroids) and
non-polar metabolites. Total ion chromatograms (TICs) in positive electrospray ionization
mode (ESI+) are shown in Figure 1, where clear differences are observed between BC
subtypes and HC groups corresponding to the most significant discriminatory features
detected: very polar metabolites eluted in the first 3 min (Figure 1a,c); medium-polar
metabolites were found to elute from 8.5 to 12.5 min (Figure 1a,b,d); non-polar metabolites
were not found in our work to be discriminatory after all the statistical analysis.
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and LB_BC (pink) (d) sample compared to a HC sample (green). Remarkable differences were observed between BC and
HC samples.

2.3. Chemometric Analysis

Different data matrices were obtained depending on the ionization mode and the set
of BC molecular subtype analyzed. Retention time (RT) windows and mass tolerances were
determined for each analyzed set based on the data of selected chromatographic peaks.
After monoisotopic selection, contaminants were removed based on the organic solvent (OS)
filtration and several features presented in the quality control (QC) samples were excluded
for unacceptable variability (relative standard deviation > 30%). Remaining variables were
evaluated by multivariate statistical analysis (Table S1). The close clustering of the QC



Cancers 2021, 13, 147 4 of 18

samples in Figure 2 indicates that the separation observed between the corresponding
study groups was mainly due to biological reasons in ESI−. The authors found that PC1
and PC2 explained 54.6%, 47.9%, 40.5% and 39% of the total of variance in LA, HER2, TN,
LB in the ESI− mode analysis, respectively. The variance obtained with PC1 and PC2 was
42.5%, 40.5%, 44.8% and 43% in LA, HER2, TN, LB in the ESI+ mode analysis, respectively.
Unsupervised principal component analysis (PCA) score plots obtained by ESI+ are shown
in Figure S1. Score plots of the partial least squares-discriminant analysis (PLS-DA) models
illustrated a marked separation between the HC group and BC molecular subtypes by both
ESI modes (Figure 3 and Figure S2); the “goodness” of the PLS-DA model, measured by
R2 and Q2, showed that no over-fitting was observed and, consequently, these models are
acknowledged for successful discernment between HC patients and the LA, LB, TN and
HER2 BC molecular subtypes [30] (Table S1). Signals with false discovery range (FDR)
corrected p-values < 0.05 were selected as altered metabolites; those with a fold-change
(FC) value of at least 1.3 between the study groups were selected as potential biomarkers
(BM) to identify.
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2.4. Differential Metabolomic Profiling

A tentative identification of the final candidates was achieved as it was previously
reported by the Schymansky classification. All identified metabolites were classified at
level 1 and 2, therefore, their identities or probable structures are confirmed [31,32]. Hence,
5 metabolites were defined for the LA phenotype, 7 for LB, 5 for HER2 and 3 for TN (Table 1).
The rest of metabolites (Table S2) met the criteria established for potential biomarkers of BC,
although they could not be identified due to their MS/MS pattern, which did not match any
of the queries of the compound databases searched (Metlin, Human Metabolome Database,
Lipid Maps, PubChem, MassBank and NIST) or commercial standards used. This is likely
to happen since the major part of the identity queries belonged to a similar molecular
family whose virtual MS/MS spectra differences needed to be clarified, or because some of
the signals have not been discovered yet.
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Table 1. Differential identified metabolites of molecular subtypes in BC.

BC Molecular Subtype Tentative ID m/z RT Mass Error (ppm) p (FDR) FC * (BC/HC) Adduct Molecular Formula

ESI+

LB

LysoPE(18:2) 478.2916 11.34 −2.5 1.670 × 10−8 0.6008 [M+H] C23H44NO7P
LysoPE(18:1(11Z/9Z)) 480.3108 12.15 4.8 5.365 × 10−3 0.6303 [M+H] C23H46NO7P
LysoPE(18:1(11Z/9Z)) 480.3073 12.47 −2.5 9.058 × 10−10 0.4713 [M+H] C23H46NO7P

LysoPC(20:3) 546.3539 12.16 −2.7 2.214 × 10−2 0.7303 [M+H] C28H52NO7P
Biliverdin 583.2566 8.95 2.6 7.390 × 10−9 1.5681 [M+H] C33H34N4O6

LA
L-Tryptophan 1 188.0707 3.73 0.5 2.503 × 10−2 0.6362 [M+H-NH3] C11H12N2O2

LysoPC(14:0) 468.3084 9.66 −0.2 3.745 × 10−2 0.5849 [M+H] C22H46NO7P

HER2
LysoPE(18:1(11Z)/9Z) 480.3109 12.31 5 6.192 × 10−3 0.6407 [M+H] C23H46NO7P

LysoPC(0:0/16:0) 496.3411 11.71 2.6 6.396 × 10−6 0.6701 [M+H] C24H50NO7P
Biliverdin 583.2525 8.65 −4.5 2.0621 × 10−6 1.6265579 [M+H] C33H34N4O6

TN
L-Tryptophan 1 188.0702 3.4 2.1 4.153 × 10−2 0.625911 [M+H-NH3] C11H12N2O2

LysoPC(16:0/0:0) 518.3224 10.07 1.3 0.03043 0.5289669 [M+Na] C24H50NO7P

LB
ESI−

LysoPE(16:0) 452.2796 5.71 2.9 5.427 × 10−14 0.5342 [M-H-H2O] C21H44NO7P
LysoPE(18:2) 476.2804 5.59 4.4 1.304 × 10−8 0.5498 [M-H] C23H44NO7P

LA
L-Tryptophan 2 203.0824 1.27 −1 1.637 × 10−2 0.6543 [M-H] C11H12N2O2

Glycoursodeoxycholic
acid 3 448.3066 3.24 −0.4 2.861 × 10−2 0.5646 [M-H] C18H34O4

LysoPE(18:2) 476.2766 5 −3.6 3.489 × 10−2 0.6711 [M-H] C23H44NO7P

HER2
L-Tryptophan 2 203.0836 1 4.9 7.536 × 10−5 0.6744 [M-H] C11H12N2O2

LysoPE(18:2) 514.2381 5.5 7.8 3.403 × 10−4 0.6408 [M+K-2H] C23H44NO7P

TN LysoPE(18:1(11Z)/9Z) 957.5976 5.86 2.6 0.027908 0.4407772 [2M-H] C23H46NO7P

Features statistically significant (FDR < 0.05 and FC > 1.3) with a tentative identification based on their accurate mass (m/z), MS/MS pattern or comparison with commercial standards 1,2,3, were selected to create
the proposed multivariate model. * Fold change (FC) expressed as the ratio of two averages (BC/HC); BC varies depending on the molecular subtype. BC: breast cancer; HC: healthy control; LA: luminal A; LB:
luminal B; HER2: overexpressing human epidermal growth factor 2; TN: triple negative.
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Thus, RT and MS/MS spectra of L-Tryptophan and Glycoursodeoxycholic acid
(GUDCA) could be compared with their commercial standards under the same analytical
conditions (Figure 4a,b and Figure S3). The experimental pattern of these metabolites
matched with their standards so that the tentative identity could be confirmed.
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Figure 4. Characteristic MS/MS spectra of m/z 188.0707 in a biological sample (green) (a.1) and the L-Tryptophan standard
at 3.73 min in ESI + (blue) (a.2) and m/z 203.0824 at 1.27 min in a biological sample (green) (b.1) and the L-Tryptophan
standard in ESI− (blue) (b.2). MS/MS spectra revealed the characteristic fragmentation pattern of L-Tryptophan both in
ESI+ and ESI−.
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2.5. Biomarker Evaluation and Model Creation

The diagnostic ability of the final tentatively identified candidates was evaluated
with a multivariate receiver-operating characteristic (ROC) analysis. In this regard, we
applied a PLS-DA model to combine our set of biomarkers to obtain the area under curve
(AUC), which is a measure of how well a parameter can distinguish between two diagnostic
groups. The AUC values obtained for each set of metabolites (Table 1) to discriminate
between healthy patients and subtypes of breast cancer were 0.870, 0.919, 0.961 and 0.954
in LA, HER2+, TN and LB respectively. The performance of this biomarker model was
evaluated using a balanced Monte Carlo cross-validation procedure. Although the model
might improve when adding more of the potential biomarkers proposed in our work
(Table S2), these features did not have a reliable structure ID since they could be only
identified by their m/z and RT. Therefore, we preferred to use those metabolites based on
the FDR corrected p value < 0.05, FC value > 1.3 and a tentative identification with a level
classification of 1 or 2 by Schymansky (Table 1). The outcomes obtained for diagnostic
potential of the selected biomarkers are summarized in Figure 5 and Table 2.
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Figure 5. ROC curves for combined biomarkers model in LA_BC (a), HER2_BC (b), TN_BC (c) and LB_BC (d) by ESI+ and
ESI−; 100 cross-validations were performed, and the results were averaged to generate the plot.

MetaboAnalyst 4.0 Web Server software (Wishart Research Group at the University
of Alberta, Alberta, Canada) provided an average of predicted class probabilities of each
sample in the 100 cross-validations. Confusion matrix in LA_BC revealed 14 BC and 16 HC
samples correctly classified. Concurrently, 26 HER2_BC samples were correctly classified,
whereas 28 samples were correctly distributed in the HC group. In TN_BC samples 13
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BC and 11 HC samples were correctly classified; while 50 BC and 54 HC samples were
properly assigned in LB_BC molecular subtype.

Table 2. AUC scores of selected biomarkers (BM) for the proposed models and confusion matrices of
the BC subtypes.

BC Molecular Subtype BM AUC 95% CI Confusion Matrix

BC HC

LA 5 0.87 0.651–0.992 14/20 16/21
HER2 5 0.919 0.819–0.985 26/31 28/34

TN 3 0.961 0.8–1 13/15 14/15
LB 7 0.954 0.886–0.995 50/56 54/62

2.6. Pathway Analysis

We have found a set of biomarkers, which were able to discriminate each breast cancer
subtype significantly. These first funding to distinguish at molecular level using untargeted
metabolomics may improve the treatment of breast cancer and move towards to the priority
of personalized medicine and customized therapeutic intervention strategies.

According to the deregulated metabolites tentatively identified in each BC molecular
subtype by ESI+ and ESI−, we determined the major altered pathways implicated in the
four different subtypes. The outcomes were obtained by analyzing results in ESI+ and
ESI−, differentiating by phenotypes. Thus, pathway analysis revealed that porphyrin and
chlorophyll metabolism, glycerophospholipid metabolism, tryptophan metabolism and
aminoacyl-tRNA biosynthesis appeared to be altered (Table S3). Statistically significant
pathways (p < 0.05) are shown in Table 3.

Table 3. Altered pathways associated with BC molecular subtypes by ESI+ and ESI−.

Altered Pathways BC Molecular Subtype p-Value

Porphyrin and chlorophyll metabolism LB and HER2 0.038347
Glycerophospholipid metabolism LA, LB, TN and HER2 0.045927

Pathway Analysis using MetaboAnalyst 4.0 Web Server software revealed two statisti-
cally significant dysregulated pathways (p value < 0.05) in breast cancer molecular subtypes.

3. Discussion

The advent of the –omics techniques is substantially accelerating predictive, pre-
venting and personalized medicine. Next-generation sequencing (NGS), genomics and
transcriptomics provide a better understanding of the genomic architecture of cancer and
allow the discovery of differentially expressed genes that drive and maintain tumorigenesis.
Genomic profiling has yielded potential biomarkers clinically relevant for early diagnosis
of breast cancer, but these analytical platforms have some disadvantages, like shorter
read lengths that challenges genome alignment and assemble, how to navigate through
mega-datasets and, additionally, their cost is still high in comparison with other techniques.
In contrast with the gene panels discovered by other techniques, metabolites are closer
to the phenotype of the organism than genes and proteins, so the metabolome can be a
point of convergence for genetic variation influencing complex traits, and can efficiently
elucidate the mechanisms underlying phenotypic variation. Thus, metabolomics profiling
is considered as a relatively more rapid, accurate and non-invasive method to discover diag-
nostic and prognostic biomarkers. In this work, we applied an untargeted high-throughput
metabolomics approach to compare the plasma metabolic profiling changes associated with
the distinct BC molecular subtypes (LA, LB, TN and HER2) versus healthy controls. By
using RPLC-HRMS in ESI+ and ESI− modes, we were able to detect statistically significant
differences in certain metabolites with high diagnostic capacity in the four different BC
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phenotypes, which are involved in relevant biological cancer-related pathways such as:
glycerophospholipid metabolism, porphyrin and chlorophyll metabolism, tryptophan
metabolism and aminoacyl-tRNA biosynthesis.

Otto Warbug described in great detail how cancer cells increase their glucose con-
sumption as a fuel source to support the anabolic processes that promote their uncontrolled
proliferation. Not only have Warburg’s findings been confirmed, but other catabolic path-
ways have demonstrated their fundamental role in cancer progression [33,34]. Our findings
go in accordance with the essential necessity of upregulating the energy supply in breast
cancer cell growth and proliferation. Interestingly, a significant decreased concentration
of L-Tryptophan (Trp) was observed in plasma of LA, TN and HER2 molecular subtypes
of BC in comparison with healthy controls (FDR corrected p value < 0.05, FC < 0.6). De-
creased tryptophan in plasma and serum of BC patients has also been reported in several
studies [35–38]. Although the role of Trp catabolism in tumor proliferation is still unclear,
it has been discovered to indirectly promote the degradation of the extracellular matrix
and invasion on cancer cells [39]. Two main enzymes catalyze tryptophan into metabolites
of the kynurenine (Kyn) pathway: tryptophan-degrading dioxygenases indoleamine-2,3-
dioxygenase (IDO1) and tryptophan-2,3-dioxygenase (TDO2) [40,41]. Kyn activates the aryl
hydrocarbon receptor (AhR) which contributes to cancer immune escape since it promotes
an immunosuppressive tumor microenvironment by an increase of IL-10, Treg cells and
suppressing immune activation cells [42]. Therefore, in cancer with an overexpression of
IDO1/TDO2, increased Trp catabolism could lead to the depletion of its serum concentra-
tion and the accumulation of Kyn metabolites, which enhanced cancer scenario [43–46].
Nevertheless, up to date there are no IDO1/TDO2 inhibitors currently approved by the US
Food and Drug Administration. The most recent clinical trial publishing the effect of an
IDO1/TDO2 inhibitor, Indoximod (D-1MT/NLG-8189), did not show a clinical benefit in
metastatic BC patients when combined with taxane chemotherapy [47]. In fact, a lot more
research is needed in order to warrant the efficacy of these inhibitors in clinical practice [48].

The reprogramming of lipid metabolism is a hallmark of many cancers, including
breast cancer. Several lipoids were identified to be differentially altered in LA, LB, TN and
HER2 molecular subtypes when comparing with healthy controls, which emphasize the
importance of investigating the lipid metabolism differences in breast cancer. Phospho-
lipids are a main component of cell membranes, they play a major role in cell signaling and
cycle regulation and are a source of fatty acids (FA) which oxidative metabolism and ATP
production is critical, not only in normal cells but also in cancer function [49]. In partic-
ular, a decreased plasma concentration of phosphoethanolamines (LysoPE (16:0), (18:1),
(18:2) FDR < 0.05 and fold change < 0.6) and phosphocholines (LysoPC (14:0), (16:0), (20:3)
FDR < 0.05 and fold change < 0.7) was observed. Our findings are in line with the already
suggested distinction in membrane dynamics across molecular subtypes of breast cancer,
where the acyl-chain constituents of PC and PE is remodeled by the action of phospholi-
pases and lysohpospholipid acyltransferases with the delivery of fatty acid molecules for
structural, signaling, and energy-producing purposes of breast cancer cells [50]. However,
in accordance with other studies, breast cancer cells adapt to metabolic stress under given
experimental conditions (glutamine deprivation or serum deficiency), by changing PE
and DAG homeostasis. In both cases, an accumulation of phosphoethanolamine (PEtn)
was observed in breast cancer cells with reduced expression of PCYT2, suggesting tumor
progression in response to glutamine deprivation [51,52]. Moreover, in conformity with
a recent prospective study where 1624 first primary incident invasive breast cancer cases
were compared by their molecular phenotypes with 1624 matched controls, a phosphatidyl-
choline (LysoPC (20:3)) was found to have a negative association with risk of breast cancer
as we found in our analysis [53]. These biomarkers might open the possibility of iden-
tifying an early poor prognosis as well as detecting residual disease after neoadjuvant
treatment (NAT).

Furthermore, only two non-related metabolites were found to be differently expressed
under our experimental conditions in luminal A, luminal B and HER2 molecular subtypes:
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biliverdin and glycoursodeoxycholic acid. High levels of biliverdin (FDR < 0.05 and
FC > 1.5) were detected in plasma of luminal B and HER2 cancer patients. Although both
biliverdin (BV) and its catabolite bilirubin (BR) are non-toxic molecules that, under most
conditions, act as anti-oxidants by scavenging or neutralizing reactive oxygen species
(ROS) [54], they are also endogenous activators of aromatic hydrocarbon receptors [aryl
hydrocarbon receptor (AhR)] [55]. So, the increment of BV in plasma of LB and HER2
cancer patients would suggest its implication in signaling and gene expression related
to cell growth and cancer progression either by its increased plasma concentration, an
up-regulation of the heme oxygenase-1 (HO-1) or a dysregulation of its catabolic enzyme
biliverdin reductase (BLVR-A or BLVR-B) [56–58].

Moreover, not many studies have had an impact on our understanding on how the
bile acid pattern differs in BC subtypes until now. Although an influence of bile acids
on the development of breast cancer cells and the estrogen receptor function had been
suggested [59], both pro and anti-proliferative effects of bile acids in different breast cancer
cell models have been determined. Plasma deoxycholic acid (DA) concentrations were
found to be higher in breast cancer patients than in controls without considering the BC
molecular differences [60], while deoxycholate (DC) inhibited human luminal A breast
cancer cell lines proliferation and glycochenodeoxycholate (GCDC) enhanced patient
survival in another study [61]. In this aspect, our results show low levels of GUDCA in
plasma of 21 luminal A cancer patients when compared with 21 healthy controls (FDR
< 0.05 and FC < 0.06), which makes it interesting for further study in order to clarify its
function in breast cancer development.

Finally, this study demonstrated that the four major BC subtypes could be discrimi-
nated using an untargeted metabolomics approach. Precise classification of these pheno-
types has important implications in breast cancer personalized treatment, tailored follow
up and detection of early recurrence.

4. Materials and Methods
4.1. Participants and Ethics

A total of 131 breast cancer patients and 134 healthy control subjects were recruited
over 12 months at the Medical Oncology Unit of the University Hospital of Jaén (Spain).
The study was approved by the Institutional Review Board of the Clinical Research Ethics
Committee of Jaén and all clinical investigations were conducted under the Helsinki
Declaration guidelines and the International Conference on Harmonization-Good Clinical
Practices (ICH-GCP) guidelines. Every patient provided written informed consent for
participation prior to blood sample extraction. The patient selection protocol was set as
follows: female subjects being at least 18 years old with histological confirmation of BC, no
detectable macro metastases and no previous anticancer treatment. Demographic details
and clinical diagnosis of studied subjects are summarized in Table 4. The cancer stage was
classified according to the 2002 Tumor Nodes Metastasis (TNM) system. Particularly, those
BC patients diagnosed with HER2- and ER+ with Ki67 > 20% were defined as luminal B
group and patients diagnosed with HER2- and ER+ with Ki67 < 20% were categorized as
luminal A. As for non-luminal subtypes, all BC patients who neither expressed hormone
receptors (PR-, ER-) nor overexpressed human epidermal growth factor 2 (HER2-) were
considered as triple negative breast cancer patients; and finally, patients overexpressing
human epidermal growth factor 2 were diagnosed as HER2+ breast cancer patients.

4.2. Plasma Sample Preparation

Samples were collected in EDTA tubes after at least 8 h fasting using standard
venipuncture procedures. Blood was then centrifuged at 1400× g for 10 min at 4 ◦C and
the supernatant was carefully aspirated and transferred into new vials, and immediately
stored at −80 ◦C until the analysis.
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Table 4. Demographic and clinical characteristics of breast cancer patients and healthy control subjects.

Characteristics LB HC LA HC TN HC HER2 HC

Subjects 61 64 21 21 15 15 34 34
Age (Range) 49 (27–75) 50 (42–56) 50 (32–81) 49 (34–60) 49 (29–71) 51 (26–63) 51 (33–70) 49 (28–62)

BMI (Kg·m−2) 25.63 (16.9–40.5) 25.35 (19.8–30.0) 24.90 (20.0–37.2) 25.00 (18.0–28.3) 27.60 (21.60–41.23) 26.5 (21.3–30.0) 26.10 (21.0–33.3) 25.30 (20.80–29.80)
HER2 Negative - Negative - Negative - Positive -

PR Neg/Pos - Neg/Pos - Negative - Neg/Pos -
ER Positive - Positive - Negative - Neg/Pos -

Ki67 >20% - <20% - - - - -
TNM-stage IA 0 - 1 - 0 - 1 -
TNM-stage IIA 26 - 10 - 9 - 9 -
TNM-stage IIIA 12 - 0 - 0 - 3 -
TNM-stage IIB 19 - 9 - 3 - 19 -
TNM-stage IIIB 2 - 1 - 2 - 1 -
TNM-stage IC 2 - 0 - 1 - 1 -

HC and BC patients were matched in terms of age and BMI. BC: breast cancer; LB: luminal B; HC: healthy control; LA: luminal A; TN: triple negative; HER2: human epidermal growth factor receptor 2 positive;
BMI: body mass index; PR: progesterone receptor; ER: estrogen receptor; TNM: tumor nodes metastasis.
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4.3. Metabolite Extraction

An aliquot of 600 µL of acetonitrile (AcN) was added to 75 µL of plasma and the
mixture was shaken for 2 min. Then, samples were centrifuged at 15,200× g for 10 min at
4 ◦C. The supernatant was collected in HPLC analytical vials. After that, it was evaporated
in a GeneVac HT-8 evaporator (Savant, Holbrook, NY, USA) and kept frozen at −80 ◦C
till the analysis. Finally, dry residues were reconstituted in 210 µL of water:AcN (50:50)
with 0.1% formic acid and 250 ppb of L-leucine (1–13C, 99%), Roxithromycin, Caffeine-d3,
Creatine (methyl-d3) monohydrate, L-abrine (methyl-d3) monohydrate and Bisphenol
A-d16 as internal standards.

4.4. LC-HRMS Analysis

Samples were analyzed using an Agilent 1290 LC system (Agilent Technologies, Santa
Clara, CA, USA) coupled to a quadrupole-time-of-flight 5600 mass spectrometer (AB SCIEX
Q-TOF 5600, Concord, ON, Canada) in positive and negative electrospray ionization modes
(ESI+, ESI−). A high performance liquid chromatography (HPLC) mode separation in
ESI+ was carried out using an Atlantis T3 HPLC C18 column (2.1 mm × 150 mm, 3 µm;
Waters Corporation, Milford, MA, USA) kept at 25 ◦C. Organic Solvent (OS) consisted of
water:AcN (90:10) with 0.1% formic acid (eluent A) and AcN:water (90:10) with 0.1% formic
acid (eluent B). The column was eluted with the following gradient: 0–0.5 min 1% eluent
B; 0.5–11 min 99% eluent B; 11–15.50 min 99% eluent B; 15.50–15.60 min 1% eluent B and
15.60–20 min 1% eluent B. The elution flow rate was set at 300 µL/min [62]. Then, chromato-
graphic separation was performed using a Gemini HPLC C18 column (100 mm × 2 mm,
3 µm; Phenomenex, CA, USA) kept at 25 ◦C in ESI− mode. The flow rate was 300 µL/min
with mobile phases A (90% water: 10% AcN) and B (10% water: 90% AcN), both containing
0.1% ammonia at 20%. The gradient consisted of 0–0.3 min 1% eluent B; 0.3–7.3 min 99%
eluent B, 7.3–10.3 min 99% eluent B and 10.3–13.3 min 1% eluent B. The TOF method
operated with the Q-TOF 5600 allowed mass selection (80–1600 Da) with high resolution,
in combination with an information dependent acquisition (IDA) method, which enabled
the fragmentation of the eight most intense ions, to collect full-scan HRMS and MS/MS
information simultaneously.

The exact mass calibration was automatically performed for every 10 injections of
5 µL of randomly injected plasma samples. Organic solvent samples were analyzed
along the sequence for every 30 injections; quality control samples were analyzed for
every 10 injections. The analysis of OS samples provided high impurity identification
on either organic solvents or extraction procedure, and allowed discarding of carryover
contamination. System stability and performance are evaluated by QC samples—a pool of
equal volume of all plasma samples used in the study.

4.5. Data Processing

MarkerView software (version 1.2.1, AB SCIEX, Concord, ON, Canada) was used
for LC-HRMS raw data processing. This tool performs peak detection, alignment and
data filtering, providing a data matrix where the measured mass-to-charge ratio (m/z),
retention time (RT) and intensities are defined for each sample. Afterwards, to minimize
mass redundancy and enhance the true molecular feature selection, only monoisotopic
peaks were considered. Background and contaminants were removed from the OS by
applying an additional filtering procedure with fold change (<1.5) and a t test (p > 0.05)
between OS samples and study samples. Finally, according to FDA criteria for untargeted
metabolomics, features with relative standard deviation higher than 30% were discarded
because of their unacceptable variability in the QC samples [63]. The next steps were
carried out using MetaboAnalyst 4.0 Web Server software (Wishart Research Group at the
University of Alberta, Alberta, Canada) [64].
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4.6. Normalization and Analytical Validation

Prior to the statistical analysis, normalization by a QC reference sample (probabilistic
quotient normalization), transformation and scaling were applied to convert data set into a
more Gaussian-type distribution [65,66]. Then, the PCA was used to assess the quality of
the analytical system performance [67]. Analytical system stability was validated by QC
samples presentation on a PCA plot. In parallel, the PLS-DA score plot showed possible
outliers. Parameters R2 and Q2, which estimate goodness of fit and goodness of prediction
respectively, were calculated to evaluate the statistical quality model description.

4.7. Statistical Analysis

Univariate analysis (UVA) was carried out using the non-parametric Wilcoxon rank-
sum test to evaluate differences between BC patients and HC subjects. Benjamini-Hochberg
false discovery rate (FDR) correction was performed afterwards to minimize the expected
proportion of false positives (Type I errors) [68]. In this regard, a p value of 0.05 (corrected
by FDR) for the t test is generally used in metabolomics as a cutoff threshold. Signals
selected as potential candidates for a final discriminatory model were selected also based
on their fold change (FC > 1.3). Eventually, a multivariate analysis was applied to identify
features responsible for discriminating both study groups [30,69].

4.8. Metabolite Identification

PeakView software (version 1.0 with Formula Finder plug-in version 1.0, AB SCIEX,
Concord, ON, Canada) was used to predict the elemental formula of selected candidates
from accurate mass, isotopic clustering and fragmentation patterns. The assignment
of a tentative identification for each selected metabolite was possible by searching dif-
ferent compound databases (Metlin, Human Metabolome Database, Lipid Maps, Pub-
Chem [70–73]) for accurate mass values. Structural identification of the molecular formula
was achieved comparing the experimental fragmentation spectra against spectral databases
(MassBank [74], NIST2014: version 2.2, Scientific Instrument Services, Inc, Ringoes, NJ,
USA).

4.9. Biomarker Evaluation

Clinical relevance of the candidate metabolites was evaluated with the area under
the receiver-operating characteristic curves (AUROC). In order to check the classifier
performance of the biomarkers proposed for the diagnostic model, a multivariate ROC
analysis was performed.

4.10. Pathway Analysis

MetaboAnalyst 4.0 Web Server software was used for the identification of altered
metabolic pathways [64]. The metabolite ID matching was performed with Human
Metabolome Database and KEGG database [71,75]. The analysis was adjusted by a hyper-
geometric test and the impact on pathway topology was based on relative-betweenness
centrality.

5. Conclusions

Here we present an untargeted LC-HRMS metabolomics approach as a non-invasive
technique to identify differential metabolomics signatures for BC subgroups. We found
distinct molecular profiles representative for LA, LB, HER2 and TN BC phenotypes, which
may act as crucial biomarkers for accurate diagnosis, phenotypic discrimination and per-
sonalized therapeutic intervention. It is worth highlighting the importance of a deep
understanding of the molecular differences among BC subtypes within the realm of person-
alized medicine to avoid unnecessary side effects or inadequate target engagement. The
metabolomics profiles discovered could be used as a powerful tool in clinical practice, not
only to determine the existence of residual disease after neoadjuvant therapy and, thereby,
contribute to the identification of patients who will absolutely benefit from additional
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treatment, but also to enlighten the development of new therapeutic strategies for each BC
molecular subtype and tailored follow up. Finally, our findings reinforce a foundation to
identify new biological targets in key metabolic pathways that may help to identify early
subsequent relapses in the different BC phenotypes. Further analyses in larger prospective
cohort of patients would be necessary to validate the prognostic/diagnostic capability of
the different metabolomics profiles found among the four major BC subtypes.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/1/147/s1. Figure S1: 2D score plots of the unsupervised PCA of HC group (green) and
LA_BC (light blue) (a), HER2_BC (orange) (b), TN_BC (yellow) (c) and LB_BC (pink) (d) patients
by ESI+ showed that the separation observed between the groups was due to biological reasons
according to the close clustering of the QC samples (dark blue). Figure S2: 2D score plots of the
supervised PLS-DA of HC group (green) and LA_BC (light blue) (a), HER2_BC (orange) (b), TN_BC
(yellow) (c) and LB_BC (pink) (d) patients by ESI− determined a notably separation between BC
molecular subtypes and matched controls. Figure S3: Characteristic MS/MS spectra of m/z 448.3066
in a biological sample (green) (a) and the glycoursodeoxycholic acid (GUDCA) standard (blue) (b)
at 3.24 min. MS/MS spectra revealed the characteristic fragmentation pattern of GUDCA in ESI−.
Table S1: Extracted peaks from RPLC ESI+ and ESI− HRMS, significant altered metabolites and
quality model description. Table S2: Features identified by accurate mass (m/z) and retention time
(RT). Table S3: Altered non-significant pathways associated with BC molecular subtypes by ESI+ and
ESI−.
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