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Twenty-four substances, mainly NIAS, have been tentatively identified in food contact polycarbonate through the application a
new, fast, and automated analytical strategy for the investigation of unknowns in food contact materials. Most of the identified
compounds were plasticizers, slip agents, antioxidants, and ultraviolet stabilizers and fragrances, and the majority of them have
not been previously identified in PC food contact materials. *e workflow setup includes an intelligent data acquisition applied
using LC-Orbitrap Tribrid-HRMS (MS3), with an automated data processing using Compound DiscovererTM. To obtain a high
confidence identification of unknown substances, a very strict criterion has been established, which comprises exact mass, isotopic
profile, MS2match, retention time, andMS3match. To check for the safety of the migration from the food contact polycarbonate, a
risk assessment was achieved using the threshold of the toxicological concern (TTC) approach. Except for the slip agent
hexadecanamide, the compounds tentatively identified do not represent a risk.

1. Introduction

Plastics for food contact applications must be safe. In
Europe, plastic articles may only be placed on the market as
food contact materials (FCM) if they are manufactured with
substances (monomers, additives, and aids) included in the
list incorporated into the Regulation 10/2011 [1] (inten-
tionally added substances, IAS). However, during their
manufacturing and use, some impurities and reaction or
degradation products can be formed (nonintentionally
added substances, NIAS). *e potential risk of NIAS should
be considered for authorization [2, 3] and for the declaration
of compliance at the marketing stages [4].

Between the different thermoplastic materials used as
FCM, polycarbonate (PC) is commonly employed for ta-
bleware and containers exposed to hot filling or heating after

filling, such as plates and bowls, that could be used re-
peatedly. *ese PC containers can also be used for reheating
food in a microwave oven [5]. Many ambient factors such as
temperature, humidity, light together with the repeated uses,
and washing cycles can damage the stability of the material
and increase the migration of substances to the food [6]. *e
main concern about degradation of PC food containers is the
release of bisphenol A (BPA), a component monomer of PC
that is currently of toxicological concern [7, 8].

To assess the safety of food contact plastic materials,
appropriate analytical methods are required [9]. Apart from
the target analysis, mainly for detection of IAS or specific
contaminants, the analysis of NIAS is mandatory to avoid
any potential health risk to the consumer [2] and should be
performed in accordance with the Regulations 1935/2004 [4]
and 10/2011 [1]. *e identification of NIAS is challenging
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and requires a non-target analytical approach [10, 11] using
LC-HRMS (Q-Orbitrap/Q-TOF), performed using two
main modes, data-dependent acquisition (DDA) and data-
independent acquisition (DIA) [12].

Bignardi et al. [13] employed a target and untargeted
method, using LC-HRMS-Orbitrap working in the data-
dependent acquisition mode (DDA), for characterization of
PC food contact plastic. In the target approach, several
plastic additives were identified. With the untargeted
analysis, some colorants and several oligomers derived from
the chain breakage were identified, following a laborious
and time-consuming process. In a recent study, the same
research team [14] applied the target method with UHPLC-
HRMS to determine the migration from PC tableware
objects, detecting oligomers from the PC chain and traces of
colouring agents.

To perform an exhaustive characterization of NIAs, an
extensive acquisition (DDA including Full Scan and MSn)
and identification of the unknown substances is necessary.
*is is challenging because of the large number of features
present both in the samples and the background (blanks
and/or matrix). In order to automate these procedures, new
acquisition tools are developed for background removing,
exhaustive precursor selection (inclusion list), and creation
of dynamic and real-time exclusion list [15]. Likewise, an
automated library search has been improved through the
data processing tool Compound Discoverer™ [16].

For the identified NIAS, a risk assessment is necessary to
ensure the safe usage of the PC containers. One practical
option is to use the threshold of the toxicological concern
(TTC) approach that estimates the theoretical toxicity of
compounds linked to their molecular structure, and a
threshold value is provided below which there is a very low
probability of adverse health effects [17, 18].

In this study, a new approach for the determination of
unknown substances in PC bowls used for food container
was investigated. We evaluated the capacity for exhaustive
spectral data acquisition of an innovative intelligent ac-
quisition mode (AcquireX™) using DD-MS3. In the second
phase, the automatic search on compound libraries and
spectral databases was employed to putative identification of
unknown compounds. Finally, we assessed the risk of the
detected migrating substances.

2. Materials and Methods

2.1. Chemicals and Samples. Chemical standards of terfe-
nadine and Val-Try-Val were from Sigma Life Science (St
Louis, MO, USA), triallyl phosphite was from Alfa Aesar
*ermo Fisher (Kandel, Germany), and sulfaguanidine,
sulfadimethoxine, reserpine, caffeine, and acetaminophen
were obtained from Sigma Aldrich (St Louis, MO, USA).
Solutions of 10 ng/mL of these chemicals were prepared in
H2O :MeOH (70 : 30, v/v) and used as internal standards.

Chemical standards of bis (2-ethylhexyl) adipate, cam-
phor, dibutyl sebacate, dibutyl phthalate, erucamide, 2-(2′-
hydroxy-5′-methylphenyl) benzotriazole (benazol P),
methyl dihydrojasmonate, oleamide, and tributyl acetyl
citrate (Citroflex-A4), all from Sigma Life Science (St Louis,

MO, USA), and diethyl phthalate, dibutyl adipate, and
tris(2,4-ditert-butylphenyl) phosphite (Irgafos 168), from
LGC Standards (Bury, United Kingdom), were used to
quantify and confirm the identity of the tentatively identified
substances.

We analysed polycarbonate bowls that, according with
the declaration of conformity, were used in repeated contact
with miscellaneous foods such as soups and broths, during a
maximum time contact of 2 hours and a temperature be-
tween 85°C and 89°C and prepared to endure until 2000
washing cycles.

2.2. Migration Test and Sample Preparation. Migration tests
were achieved in agreement with the Regulation (EU) No.
10/2011 [1]. We used the food simulant C (20% of ethanol in
water (v/v)). *e migration test was performed during 2
hours at 100°C. We introduced around 200mL of simulant
into the PC rectangular bowl (10 cm× 5.5 cm× 3 cm) and
keep it in the incubator. According with Regulation (EU)
No. 10/2011, the migration test was repeated three times.
Taking into account this Regulation, 6 dm2 is equal to 1Kg of
food.

2.3. LC-HRAMSAnalysis. We used a*ermo Ultimate 3000
UHPLC system, with a column Hypersil Gold
100mm× 2.1mm× 1.9 µm (*ermo Scientific). *e chro-
matographic system was linked with an Orbitrap ID-X
Tribrid mass spectrometer (*ermo Fisher Scientific, USA).
A volume of 5 µL was injected, and the flow rate was
300 µL/min. *e chromatography started with 90% phase A
(water) and 10% B (methanol). *e linear gradient used was
0–18min, 70% B; 18–21.5min, 98% B; sustained at 98% B
from 21.5min to 25min; decrease to 10% B, from 25min to
26min; and maintained in this initial conditions until
30min.

Both positive and negative ionizations were employed.
*e H-ESI parameters were electrospray voltage of 3.5 kV
positive (3.2 Kw negative), sheath gas of 25 arbitrary units
(a.u), and auxiliary gas of 5 a.u. *e ion transfer tube
worked at 270°C and the vaporizer temperature at 180°C. A
resolving power of 120.000 FWHM was used in full scan
(100–900m/z). *e MS2 was acquired at 15.000 FWHM,
with a precursor mass range of 125–900m/z. *e MS3
precursor was isolated in the quadrupole mass filter (0.4Da),
fragmented in the HCD cell and detected in the ion trap
(FWHM≤ 0.3).

2.4. Acquisition and Data Processing. For unknowns anal-
ysis, an intelligent data approach (AcquireX©,*ermoFisher
Scientific) was employed. *e details of this approach were
described previously [19]. *e acquisition workflows for
Deep Scan (DS) and Interative Processing Exclusion (IPE)
modes in DD-MS3 are shown in Figures SI-1-2.

For compound identification, the raw files acquired were
processed using Compound Discoverer™ 3.1 (CD) (*ermo
Fisher Scientific). *e CD workflow is shown in Figure SI-3,
and each node is defined in Table SI-1. *e CD provides a
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wide list of annotated compounds (several hundreds).
However, the majority of them do not present enough
analytical evidence for tentative identification. To consider a
compound tentatively identified with a high degree of
confidence, we used the criteria previously described by [19].
In short, exact mass is with a Δ mass< 0.5 ppm; isotopic
profile (SFit%)> 70%; MS2 match (experimental vs. library
(mzCloud) spectra)> 70%; retention time consistent with
their log P.

2.5. Safety Assessment. For safety assessment of the identi-
fied NIAS, we use the threshold of the toxicological concern
(TTC) approach [2]. *is was performed using the Toxtree
software (http://toxtree.sf.net/predict) developed by Idea
Consult Ltd., commissioned by JRC Computational Toxi-
cology and Modelling (https://apps.ideaconsult.net/data/ui/
toxtree). *e software estimates the TTC following Cramer
rules, and for each of the three Cramer classes, a tolerable
daily intake (TDI, mg/person/day) is assigned. Class I, the
least toxic class, has a TDI� 1.8mg/person/day, Cramer
class II (intermediate) has a TDI� 0.54mg/person/day, and
Cramer class III (most toxic) has a TDI� 0.09mg/person/
day.

*e estimated daily intake (EDI) was calculated based on
the default assumption in Europe that an adult person
consumes 1Kg of food packaged in a dm3, using the fol-
lowing formula [20].

EDI (mg/person x day)�migration (mg/kg) x 1 kg (food
intake per person and day).

Quantification was performed using pure standards
(Section 2.1). When standards were not available, a semi-
quantitative estimation of the migration (mg/Kg) was per-
formed with the average response factor of seven internal
standards [21] (Table SI-2).

Figure 1 shows the diagram of the overall analytical
procedure.

3. Results and Discussion

3.1. Identification of Unknowns. Out of 727 annotated fea-
tures with CD, only 24 meet the metrics established for
tentative identification of compounds (Table 1). In order to

achieve a high degree of identification confidence, very
demanding criteria were followed (Section 2.5). All of them
present a mass error (ΔM) in general lower than 0.5 ppm.
Equally, the isotopic patterns present, in general, a SFit%
> 70%. Likewise, their MS2 spectra match (>70%) with the
spectra in the mzCloud library (Table 1). As an orthogonal
criteria for increasing the identification confidence, the
experimental retention time (Rtex) was compared with the
theoretical one (Rtth). To estimate the theoretical retention
time, we build a curve that relates the log P with the Rt of 107
substances of a wide range of polarities (Figure SI-4). Using
this curve, we estimated the Rtth of the identified substances.
In general, the Rtex (min) fits well with the Rtth (Table 1).

For identification of those substances that do not meet
the established criteria (only the molecular formula was
provided by CD), a more in-deep and time-consuming
manual examination is required, using in silico fragmen-
tation tools and bibliographic examination [12].

In previous published studies for non-target screening
applied to FCM, acquisitions using the data-dependent
approach (DDA) with Q-Orbitrap and data-independent
approach (DIA) with Q-TOF-MS instruments have been
used [12]. *e identification strategy is performed manually
utilizing lists of probable candidates (only formula avail-
able), spectral libraries (MS/MS2 spectra), and biblio-
graphical search.*emain drawback of this strategy is that it
is labour-intensive, and only a few compounds are tenta-
tively identified. Regarding PC food materials, only a few
substances migrating to simulants have been described. As
mentioned previously, Bignardi et al. [13] and Bignardi et al.
[14] performed a targeted and untargeted suspect screening
to identify substances migrating from food contact poly-
carbonate using DDA-MS2 acquisition. *e identification of
compounds was carried out using a list of additives (target)
and through the careful observation of the full scan chro-
matograms, the evaluation of the isotopic pattern, and the
investigation in available databases. In the untargeted
analysis, they claim the identification of several organic
colorants and polycarbonate degradation products, but no
MS2 spectra were used for structural identification. Another
study [6] investigated, using a target method with LC-
HRMS, the presence of the PCmonomer bisphenol A (BPA)
and several additives in polycarbonate tableware. BPA was

UHPLC ‐orbitrap
ID‐X tribrid
(ddMS3) 

Polycarbonate
food contact

Intelligent data
acquisition
acquireX

(thermo scientific™)   

Data analysis
(compound

discoverer 3.1) 

Risk
assessment
(cramer rules
‘TTC’)   

Compounds tentatively identified

Migration test

Figure 1: Scheme of the different stages of the presented study.
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determined in all samples (in the range of 0.5–6 µg/Kg), and
the UV absorbers Cyasorb UV 5411, Tinuvin 327, and
Tinuvin 324 and the whitening Uvitex OB were found in
some samples (from 7 ng/Kg to 4460 ng/Kg). *e target
analysis, in general, permits achieve lower LOQ.

3.1.1. MS3 Spectra. *e automated identification achieved
by the combination of the intelligent data acquisition
(AcqX-ddMS3) combined with the data processing using CD
does not use the MS3 spectra. A higher level of confidence
could provide the MS3 spectra. As can be seen in Table 1 and
Table SI-3, all compounds identified have their MS3 acquired
spectrum, except for D,L-camphor. However, it is necessary
to compare the experimental and the library (mzCloud) MS3

spectra manually. For those compounds that do not have
MS3 spectra in mzCloud, we fragmented them in silico using
CD and Mass Frontier 8.0. [32].

Ten of the identified compounds had MS3 spectra that
matched with that stored in spectrum library. Figure 2
shows, as an example, the spectra of benazol P and stear-
amide. In both MS3 spectra, the experimental parent ions
(m/z 183.0679; m/z 130.1222, respectively) and the main
fragments (m/z 155.06 and m/z 88.02, respectively) match

with the library spectra. Must be taken into account that MS3
was acquired in low resolution. On the other hand, there are
eleven substances in which experimental MS3 spectra match
with the in silico fragmentation performed with the CD. As
an example, Figure 3 depicts the experimental spectra of the
methyl dihydrojasmonate and benzyl octyl adipate and the
in silico fragments assigned to each m/z.

Using the criteria proposed by Schymansky et al. [33],
the tentatively identified compounds present a high level of
identification confidence (level 2a: unambiguous matching
with library data). *e other annotated compounds (not
discussed here), for which only the molecular formula o
exact mass is known, only achieve levels 4-5 (low levels of
identification confidence).

We have confirmed the identity of 12 out of 24 tenta-
tively identified substances using standards (Section 2.1).
*e rest of substances were not available in our lab.

3.1.2. Description of Identified Compounds. In order to
explain the presence in the polycarbonate plastic material of
the identified compounds, we search for their nature and
technological uses. Table 1 shows the functions of these
compounds. Many of them are additives, mainly plasticizers
and slip agents used in plastics. Additives are introduced
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into plastic to enhance the quality of the attributes required
for their appropriate use. *ey improve their physical
(mechanical, thermal, and durability) and chemical prop-
erties and aid with processing of polymers [34].

Plasticizers are additives used to provide flexibility and
improve their process ability, and between them,
orthophthalates are the most used plasticizers [35]. *e
typical amount range 10–70% (w/w). Among the identified
substances are included four phthalates (DEP, DBP, DPP,
and ODP). Both DBP and DPP are included in the
“Authorisation List” of Annex XIV of REACH [36] for their
toxic effects for reproduction. However, DBP are listed in the
Union List of the Regulation 10/2011 to be used as plasticizer
in repeated use materials and articles contacting nonfatty
foods with a specific migration limit (SML) of 0.3mg/Kg (we
have detected 1.34mg/Kg). Contrarily, neither DEP nor
DPP and ODP are in the Union List. Two other plasticizers
such as Citroflex A-4 and bis (2-ethylhexyl) adipate are also
included Union List of authorized substances (R. 10/2011).

Another group of identified substances is the slip agents,
which reduce friction during and after plastic manufacturing
and are used in the range of 0.05–3% (w/w) [37]. Oleamide,
erucamide, stearamide, and hexadecanamide are authorized
substances to be used as additives in plastics (IAS).

Antioxidants and ultraviolet stabilizers are widely used
additives in plastics, usually in the range of 0.05–3% to
enhance the lifetime of polymeric material, avoiding the
oxidation process by oxygen or UV light [34, 37]. Benazol P
is a benzotriazole ultraviolet (UV) light absorber that pro-
vides UV protection to a wide variety of polymers, including
polycarbonates. It is an authorized substance included in the
Union List, with a total specific migration limit (SML-T) of
30mg/Kg for the restriction group of the benzotriazole-type
UV stabilizers (three substances). Irgafos 168© is a phosphite
antioxidant that provides polymers protection against
thermooxidative degradation and is used in small amounts,
usually between 0.004% and 0.5% [29]. It is included in the
Union List (IAS).

We have also identified four odorants, which are added
into plastics to add desirable fragrance or to mask any
undesirable odor. 4-tert-Butylcyclohexyl acetate and methyl
dihydrojasmonate are included in the EU cosmetics database
[24] as perfumes. D,L-camphor is used as flavouring sub-
stance in foods and for perfuming industrial products [38].
On the other hand, galaxolidone is a metabolite of galax-
olide, a polycyclic musk widely used as a fragrance in
personal care and consumer products.

To our knowledge, these substances have not been
previously determined in the polycarbonate food contact
material. In a posterior target analysis using a target LC-MS/
MS method, we determined BPA with concentrations
ranging from 0.002mg/Kg to 0.008mg/Kg (details not
provided). *ese low levels are difficult to detect with the
wide scope of the untargeted methods.

3.2. Safety Assessment. For FCM, it is mandatory to guar-
antee their safety regarding the IAS and NIASmigration. For
IAS, the migration concentration should be compared with

the specific migration level (SML), established in the Reg-
ulation 10/2011. For those authorized substances with no
SML, we have used the limit of 60mg/Kg food (limit for
overall migration).

For NIAS with toxicological reference values (TDI), we
use this as a threshold (Table 2). For the rest of identified
compounds, we applied the TTC approach described pre-
viously (Section 2.5).

*e IAS benazol P, bis (2-ethylhexyl) Citroflex A-4, and
hexadecanamide present a migration concentration lower
than the established SML; therefore, their exposures are not
of concern (Table 2). None of the authorized substances
without SML exceeds 60mg/Kg food. *e rest of the
identified substances show a HQ< 1; consequently, their
migration does not represent a risk. *e HQ is not a reg-
ulated limit but a risk metric.

More in-deep investigation is needed to uncover the
identity of all annotated but not identified substances and to
perform a risk assessment.

4. Conclusions

A new and automated analytical strategy for identification of
unknown substances in food contact materials was applied
to food contact polycarbonate and permitted the identifi-
cation of 24 substances, mainly plasticizers, slip agents, and
antioxidants. *e majority of these substances have not been
previously identified in PC food contact materials.

*e use of the intelligent data acquisition (AcquireX©) in
both modes (DE and IPE) has permitted a fast and ex-
haustive data acquisition, and the use of DDA-MS3 provides
profuse structural information that increase the identifica-
tion confidence.

*e implementation of an automated workflow for
database searching is essential to avoid labour intensive and
time-consuming explorations. *e use of a specific CD
workflow has permitted a very fast search in different da-
tabases, which could be improved increasing the database
content with more substances.

We have defined very rigorous criteria for identifi-
cation of the annotated substances, in order to provide to
the analytical strategy with a high level of identification
confidence. *e use of MS3 provides more structural
information that increases this confidence. However,
some general accepted guidelines for NIAS identification
are necessary.

4.1. Study Limitations. For several identified substances, a
semiquantitative migration (mg/kg) was estimated using the
average response of seven internal standards not chemically
related with the identified substances. *is, obviously, is a
rough approximation for risk assessment that could be
improved using the standards of the identified substances.
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