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ABSTRACT 
 

The distribution function of systems in equilibrium must have the canonical form of the Gibbs 
distribution. To substantiate this behavior of systems, attempts have been made for more than 100 
years to involve their mechanical behavior. In other words, it seems that a huge number of particles 
of the medium as a result of interaction with each other according to dynamic laws, is able to 
explain the statistical behavior of systems during their transition to equilibrium. Modeling of 
gravitationally interacting particles is carried out and it is shown that in this case, the distribution 
function does not evolve to the canonical form. Earlier, the same results were obtained for classical 
Coulomb plasma. On the other hand, such a statistical effect as relaxation is well described by the 
dynamic behavior of the system, and the simulation data are in agreement with the known 
theoretical results obtained in various statistical approaches. 
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1. INTRODUCTION 
 

1.1 Status of the Problem and its Current 
State 

 
The formulation of the dynamical laws of 
macroscopic bodies, given by I. Newton, led to 
successes in the quantitative description of their 
behavior. The discovery of the planets of the 
solar system Neptune (according to the 
calculations of W. J. Le Verrier and D. C. Adams) 
and Pluto (according to the calculations of P. 
Lovell and W.G. Pickering) are a clear 
confirmation of this. We can predict the positions 
of the planets for centuries. Methods for 
describing the mechanical behavior of systems 
are constantly being improved [1-12]. However, 
with an increase in the number of bodies in the 
system, the prediction of their behavior becomes 
much more difficult. For systems with a huge 
number of particles, for example, for gases, 
liquids, and solids, such a prediction becomes 
simply impossible. In this case, statistical 
methods of description are used. But we, on the 
one hand, understand that this huge number of 
particles must still be described by the laws of 
dynamics. On the other hand, when trying to 
describe this, we are faced with problems that at 
first glance should not arise. The questions of 
substantiating the statistical description and their 
connection with the dynamic description are 
already becoming essential and come to the fore 
in science since the beginning of the twentieth 
century [13]. 

 
If a closed system at a certain moment of time is 
in a non-equilibrium macroscopic state, then the 
most probable consequence at subsequent 
moments of time will be a monotonic increase in 
the entropy of the system. This is the so-called 
law of increasing entropy or the second law of 
thermodynamics. It was discovered by R. 
Clausius, and its statistical foundation was given 
by L. Boltzmann [14-16]. 

 

Systems in equilibrium. Conclusions about the 
increase in entropy in a closed system and the 
form of the distribution function of systems in 
equilibrium can be traced in many available 
monographs. The conclusion that entropy 
increases (or at least does not change) during an 
irreversible transition from one equilibrium state 
to another is proved, for example, in [14] using 
the postulate that the second kind perpetuum 
mobile is impossible. The derivation of the 
distribution function for closed systems in 
equilibrium, based on the microcanonical 

distribution, is contained, for example, in [15]. 
The distribution function w(E) of systems with 
energy E in equilibrium depends exponentially on 
the entropy of the system S,  

 
w(E)  exp (S(E)) 
 

which is why it is stated that the entropy of a 
closed system in a state of complete statistical 
equilibrium has the largest possible value (for a 
given energy of the system). The form of the 
distribution function of a system as a function of 
its entropy is rarely used. Most often, depending 
on the consideration being carried out, its 
equivalent representations are used either in the 
form of a Gibbs distribution (canonical 
distribution).  

  
w(E)  exp (–E/T)           (1) 

 
where T – temperature of system, or in the form 
of a Boltzmann distribution. It is generally 
assumed that when establishing an equilibrium in 
the energy regions, where the interaction of 
particles with other particles can be ignored, or 
the interaction of a particle with only the nearest 
particle can be taken into account, the Gibbs 
distribution function transforms into the 
Boltzmann distribution function of particles. 

 
The use of the above-mentioned equilibrium 
distribution functions has been carried out in the 
consideration of a huge variety of practical 
problems, so there is no doubt that they are 
confirmed by all our daily observations. But not 
everything is as simple as it seems at first 
glance. The fact is that when considering the 
world around us as a whole, it is not impossible 
to notice that along with the destructurization of 
some systems, which just corresponds to the 
growth of the entropy of such systems, an 
organization or ordering of other systems takes 
place. The emergence of man is a vivid 
confirmation of this. However, the processes of 
structuring and complicating systems lead not to 
an increase, but to a decrease in entropy. To a 
certain extent, these emerging difficulties have 
not yet been overcome. 

 
A giant fluctuation. In principle, this contradiction 
could be eliminated by assuming that the 
Universe as a whole is an equilibrium system 
and that the part of it we observe is a giant 
fluctuation (the Boltzmann fluctuation 
hypothesis). The probability of such an event is 
extremely small (see, for example, [15, 17, 18]). 
Why, then, do we observe it? The answer to this 
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question could be found in the anthropic 
principle. Yes, other configurations of the 
Universe are more likely, but we would not be 
able to appear there, because we are the product 
of this fluctuation, and therefore we cannot 
observe such configurations. But even this 
explanation is not satisfactory. The fact is that if 
the considered fluctuation occurred not in the 
visible part of our Universe, but only within the 
solar system alone, then this would already be 
enough for the appearance of a man, but the 
probability of such an event would be 
significantly higher [15]. 

 

But the point here is not even that such 
probabilities are negligible. It would still be 
possible to somehow come to terms with this, 
i.e., with the fact that such a fluctuation is very 
rare. The fact is that in this case, our bodies and 
brains would have to appear completely formed 
out of chaos with a reserve of memory, 
knowledge, and skills although the past that 
reflects this would never really exist [17]. But our 
development, on the contrary, is based on 
information in which we are confident because it 
reflects the real past in our memory with records 
of events, experiments, etc., on the basis of 
which our formation, development, and progress 
in understanding the structure of our world take 
place.  

 

But let's say that even this happened, i.e. that 
our bodies and brains would have to appear 
completely formed out of chaos with a reserve of 
memory, knowledge, and skills. What should 
happen next? And then there should still be a 
transition to disorder. However, this also 
contradicts our knowledge. Looking at the 
metabolic function of even the simplest cells, we 
see that it involves several thousand interrelated 
chemical reactions and, therefore, requires a fine 
mechanism for their coordination and control 
[19]. This requires an extremely fine and complex 
functional organization. Metabolic reactions 
require specific catalysts-enzymes. These are 
giant molecules with spatial organization, and the 
body must be able to synthesize them. The 
biological order is both architectural and 
functional. Furthermore, at the cellular and 
supracellular levels, biological order manifests 
itself in a series of structures and interrelated 
functions of increasing complexity and 
hierarchical ordering. Such an organization 
cannot be the result of a transition to molecular 
disorder. Therefore, now the explanation through 
a giant fluctuation is not seriously considered by 
anyone. 

Open systems. Since the growth of entropy must 
occur in closed systems, the explanation of the 
existence of highly organized structures could be 
linked to their openness. In fact, it is a way of 
moving the center of consideration of the issue 
from the system to the environment surrounding 
it. To realization such a way, for example, gravity 
is involved. Gravitational fields play an essential 
role in the ordering of matter. It is thanks to them 
that stars, planetary systems, and galaxies arise. 
In general, the metric tensor depends on time, 
and external conditions are not stationary. But 
the gravitational field cannot be included in a 
closed system since in this case the conservation 
laws, which are the basis of statistics, would turn 
into identities [15]. 

 
A slightly different aspect related to gravity is 
noted in [17]. The gravitational interaction leads 
to the self-organization of matter into galaxies 
and stars, but taking into account the heat loss to 
the external environment that accompanies such 
processes leads to an increase in the total 
entropy. 
  
Another aspect. For example, when parents 
clean the children's room with randomly 
scattered toys, it would seem that the entropy is 
clearly reduced. However, such actions are 
accompanied by the splitting of food in the 
parents' organisms and the transfer of energy to 
the environment, which ultimately leads to an 
increase in the total entropy [17]. 
  

But, on the other hand, as we move to larger and 
larger systems, to the limit of the entire Universe 
as a whole, we must obtain closed systems with 
increasing accuracy. Therefore, it is not far-
sighted to transfer the source of entropy growth 
that compensates for the processes of self-
organization of the systems under consideration 
to the environment, because a similar question 
arises about the source of self-organization in the 
environment itself [18]. 

 

Becoming a problem. The study of issues related 
to the general principles of relaxation of statistical 
systems comes to the agenda as a result of 
success in the application of statistical and 
mechanical methods to the description of 
environmental phenomena. These questions 
arose together with the task of the so-called 
"substantiation of statistics", i.e., establishing the 
connection between physical statistics and 
mechanics [20-28]. First, there are the difficulties 
of introducing into mechanics the probabilistic 
representations that form the backbone of 
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statistical physics, namely, the connection of the 
irreversible transition of the statistical system to 
equilibrium and the reversibility of the equations 
of mechanics. Secondly, these are the difficulties 
arising when it is necessary to give a mechanical 
characterization of systems described by 
statistical methods. More details about the nature 
and overcoming of these difficulties can be found 
in the works [13, 29-53].  

 
The problem of irreversibility has become a 
serious stumbling block since the works of J.W. 
Gibbs [28]. He constructed a theory of statistical 
mechanics based on the time-symmetric (i.e., 
reversible) Hamilton and Liouville equations. 
Considering his theory correct and applying it to 
time-irreversible processes, he comes to 
mutually exclusive effects. On the one hand, the 
incompressibility of the phase fluid of a 
mechanical system follows from the Hamilton 
and Liouville equations. On the other hand, 
irreversible processes must proceed with an 
increase in entropy, while an increase in the 
entropy of a mechanical system means an 
increase in the volume of its phase fluid. He 
associated the growth of the phase volume with 
the mixing of the phase trajectories of the 
mechanical system. But doing so, he cancels the 
Hamiltonian mechanics on which his 
consideration is based since no increase in the 
volume of the phase fluid should occur in 
Hamiltonian systems. To describe the growth of 
the phase volume, he introduces a "coarse" 
phase fluid, the growth of the envelope volume of 
which is intended to be responsible for the 
growth of entropy. At the same time, for a finite 
mixing time, the phase cells of the "coarse" 
phase liquid must be taken of finite sizes. 
However, another problem arises here. On the 
one hand, as the final size of the cells decreases, 
we must get a better-described effect of 
irreversibility, but it turns out the opposite: the 
systems become more and more reversible. On 
the other hand, if the size of the finite cells is 
immediately directed to zero, then the mixing 
time tends to infinity, i.e., the effect that we would 
like to describe disappears. In addition, 
relaxation to equilibrium falls out of consideration 
in this approach, and we immediately get the 
equilibrium state of the system. 

 
The first works on the "substantiation of 
statistics" were associated with the 
substantiation of the ergodic hypothesis, which 
was highlighted by the review [13]. According to 
this review, Boltzmann and Maxwell argued that 
the microcanonical distribution is valid when the 

system is ergodic [18]. In the works of Boltzmann 
and Maxwell, however, one cannot find such a 
rigid statement, and it is, according to [18], on the 
conscience of the Ehrenfests. Imperceptibly 
attributing to Boltzmann and Maxwell an 
unnecessarily rigid statement of their own, the 
Ehrenfests convinced the bulk of physicists that 
ergodicity supposedly underlies at the basis of 
equilibrium statistical physics. It is now known 
that this is not the case. A statistical system can 
be non-ergodic, an ergodic or quasi-ergodic 
motion can be non-stochastic, and the phase 
volume of a statistical system does not have to 
be a single whole [18]. 

 
Ergodicity, metric transitivity. Clarification of the 
question of what the ergodic hypothesis is in 
mathematical language began with the works 
[30, 53-58]. The problem was reformulated in 
terms of the volume of the phase space and the 
measure of the phase set. It turned out that the 
classes of ergodic systems coincide with the 
classes of metrically transitive systems. 
However, it cannot be said that the 
understanding of this issue has significantly 
advanced. Birkoff's theorem, according to [33], 
only replaces one (ergodic) hypothesis with 
another (the metric transitivity hypothesis), which 
is no less dark and mysterious. In addition, it is 
difficult to prove, for example, by the form of the 
Hamiltonian of the system, whether the motion of 
the system is metrically transitive or not. Even 
examples admitting the solution to this question 
are extremely rare [34]. The research of Birkhoff 
and von Neumann was continued in the works 
[32, 33, 36, 59-68]. Gradually it became clear 
that the ergodic hypothesis significantly narrows 
the class of systems that obey it. More and more 
examples of non-ergodic statistical systems 
appeared. 

 
Von Neumann has already shown [30] that 
quantum ergodic systems are not degenerate. 
This result greatly limits the possibilities of the 
ergodic approach, since most of the quantum 
systems of interest are degenerate [19]. Even an 
ideal gas turned out to be a non-ergodic system, 
since the phase trajectory describing it does not 
fill the energy surface tightly, being constrained 
by N isolating integrals, which are the energies of 
each of its N constituent particles [69]. It also 
turned out that ergodic (and quasi-ergodic) 
motion can be non-stochastic [70]. It was shown 
that for a wide class of interacting dynamical 
systems, it is possible to construct periodic orbits 
lying in a certain subspace (on invariant tori) of 
the ergodic surface [18, 19, 69, 70]. 
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Mixing. The fact that the ergodic hypothesis 
cannot be used as a basis for statistical 
description was clearly recognized by N.S. 
Krylov, who began the development of the Soviet 
ergodic school (A.N. Kolmogorov, Ya.G. Sinai, 
etc.). This hypothesis, according to him, is both 
insufficient and not necessary for statistics [29]. 
Instead, he puts forward the mixing and conducts 
a consideration of systems with mixing. However, 
since systems with mixing are systems of the 
ergodic type [29], and the ergodic motion may 
not be stochastic (see the previous paragraph), 
then this deprives the mixing of the advantages 
for which the transition from ergodicity to mixing 
takes place [18]. In addition, the roughening 
procedure associated with the consideration of 
irreversible mixing is of an operational nature. 
The different accuracy of determining the 
relaxation time and the type of its measurement 
dictate a different division of the phase space 
into the regions under consideration, and, 
consequently, each choice of the type of 
measurement corresponds to its own relaxation 
time [29]. Thus, the attempt to quantify the 
relaxation time as a mixing process did not lead 
to success. In fact, Krylov comes to the 
conclusion that it is impossible to justify statistical 
mechanics within the limits of classical 
representations and places his hopes on 
quantum representations [18]. 

 
The development of Krylov's works was the use 
of the set theory apparatus to describe the 
mixing of the phase density [71, 72], which led to 
the concepts of dynamic or metric entropy (in 
other words, Kolmogorov entropy or K-entropy). 
Systems for which K-entropy is constant and 
positive have been called K-systems. Their main 
property turned out to be K-mixing, which is 
associated with exponential local instability. The 
K-mixing scheme is based on above mentioned 
Gibbs mixing scheme, where its fundamental 
flaw it also noted. In addition, it should be noted 
that being an irreversible, K-system, with its time-
constant rate of growth of physical entropy, 
cannot be identified with the irreversible system 
traditionally considered in non-equilibrium 
statistical physics, since in the latter case its 
relaxation ends in an equilibrium state. 

 
Integrability. An important characteristic of the 
system is its integrability, i.e., the presence of 
analytical integrals of motion and, accordingly, 
solutions in an analytical form. One of the most 
studied examples is the three-body problem. 
Numerous attempts were made to reduce this 
problem to an integrable one, but at the end of 

the XIX century, E.H. Bruns and A. Poincare 
proved that this is impossible. It turned out that 
most of the interesting problems of classical 
dynamics, starting with the three-body problem 
mentioned above, are not reduced to integrable 
systems. With the exception of some special 
cases, the Hamilton equations do not admit any 
other analytic single-valued integrals other than 
the energy integral. In addition, if we initially take 
an integrable system and perturb it with even an 
infinitesimal perturbation, then in the general 
case we end up with a non-integrable system. 
The situation in which a dynamical system does 
not have integrals of motion and, as a result, a 
continuous change in external conditions causes 
a jump in the behavior of the system, looks, from 
the point of view of classical mechanics, 
catastrophic (the so-called Poincare catastrophe) 
and is the subject of consideration of the theory 
of catastrophes. Apparently, due to this 
circumstance, Poincare identified systems with 
non-analytic integrals of motion with stochastic 
ones. However, we now know that this is not the 
case. The system can be non-integrable (KAM-
theorem), but at the same time make regular 
movements. The value of this extremely 
important Poincare result is reduced by the fact 
that there are still no general methods for 
studying systems for integrability or non-
integrability. In addition, stochasticity was 
associated not so much with the non-analyticity 
of the integrals of motion, but rather with their 
non-isolating nature. 
  
Non-integrability: regularity. The possibility of 
regular motion in the non-integrable case is 
demonstrated in the Kolmogorov-Arnold-
Moser(KAM)-theorem [73-76]. If the Hamiltonian 
of the integrable system is not degenerate and 
the ratio of the frequencies of motion of the 
system in the action-angle variables is expressed 
by irrational numbers, then the motion of the 
system occurs on non-resonant tori. When a 
sufficiently general perturbation is imposed away 
from the resonance of the unperturbed system, 
the system becomes non-integrable; however, 
the motion of the perturbed system for most 
initial conditions occurs on nonresonant invariant 
tori that differ only slightly from the perturbed 
ones. Invariant tori, on which the quasi-ergodic 
motion of integrable systems occurs, are 
destroyed under perturbation when a non-
integrable additive is added to the integrable 
Hamiltonian, but not all at once. The set of tori 
that remain invariant under such a perturbation 
has a finite measure that tends to zero with the 
growth of the perturbation. This means that the 
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system can have non-analytic integrals of motion 
and be non-integrable, while still remaining non-
stochastic, i.e., performing a quasi-periodic 
motion, which is also quasi-ergodic. 
  
Non-integrability: regularity and stochasticity. The 
possibility of both regular and stochastic 
movements in the system at the same time, 
starting from [77], has been demonstrated in a 
variety of numerical experiments [38, 39, 41, 50, 
78-81]. The Hamiltonian of systems in such 
numerical experiments is chosen as the sum of 
the unperturbed Hamiltonian for the integrable 
system and some perturbation. Even in the case 
of the system with two degrees of freedom, 
considered in [77], stochastic regions are 
separated from each other by regions with 
regular trajectories. Global stochasticity for 
systems with two or more degrees of freedom, 
when the entire phase volume of the system is a 
single stochastic region, occurs only with a 
sufficiently large perturbation. In the general 
case, the regions of stochastic motion occupy 
only a certain part of the phase space. 

 

Instability. One of the key points in the transition 
of a system to stochastic motion is the instability 
of the motion of its particles. Poincare was the 
first to draw attention to the connection between 
the stochastic motion of a mechanical system 
and the instability of such a motion, using 
examples of the unstable equilibrium of a cone 
standing on its top, problems of meteorology, 
and the distribution of small planets in the zodiac. 
An absolutely insignificant cause, which escapes 
us because of its smallness, he writes, causes a 
significant effect [82]. Or another example. 
Consider the motion of gas molecules. As the 
weakest external disturbance, we take the 
gravitational interaction of a molecule of this gas 
with a proton at the other end of the Universe, 
i.e. at distances of about 10

10
 light years. Even 

such an insignificant interaction completely 
changes the motion of the molecule in just ~ 60 
collisions with other gas molecules (under normal 
conditions), i.e., in the order of 10

-8
 seconds [81]. 

  

The instability of the particle motion is 
characterized by Lyapunov exponents. 
Accordingly, irreversible stochasticity became 
associated with the local instability of the 
system's phase trajectories. In a large number of 
works, the divergence of phase trajectories D(t) 
was considered on the basis of the instability 
increment a 
 

)exp()0()( atDtD   

At the same time, it was automatically assumed 
that the divergence of the trajectories would be 
irreversible. At this point, the system described 
by symmetric equations in time imposed a further 
asymmetry of its behavior. The correct one 
should recognize the dependence (see [18] for 
details) 
 

))exp())(exp(0(
2

1
)( atatDtD   

 
In fact, this is where the confusion in the 
consideration of reversible and irreversible 
dynamic chaos was born since it was in this 
place that the system was imposed with 
properties that it does not possess. The 
inaccuracy of the conclusions of many works was 
reduced to this (see, for example, [29, 62, 63, 83-
86]). So, for example, when studying the 
divergence of the trajectories of elastically 
interacting balls, Krylov concludes [29] that their 
trajectories inevitably run up, forgetting that, for 
example, if we let the balls go in the opposite 
direction, then his consideration should lead to 
the convergence of the trajectories. 
Consideration of the works [85, 86] is based on 
the idea borrowed from Krylov that the reflection 
of a beam of rays from a convex surface is 
necessarily scattering in nature. 

 
The stochasticity of movement in statistics 
implies an irreversible transition to chaos. In the 
case of reversible dynamic chaos, such a 
transition is impossible. If, for example, the gas 
originally described by symmetric time equations 
is located in the corner of the vessel, then it will 
not occupy the entire vessel over time, as is 
commonly assumed. If this happens, it will be for 
an extremely short time. The gas will constantly 
change the shape of its filling of the vessel, then 
occupying its entire volume, then some parts of 
it, again and again returning to the initial corner 
[18]. Dynamic chaos theory studies dynamic 
chaos in reversible mechanical systems 
described by time-symmetric equations. With 
respect to a reversible system, we can only talk 
about maintaining dynamic chaos, it cannot arise 
in such a system, since this would be associated 
with an irreversible increase in entropy [18]. 

 
Instability and blurring of the initial state. So, 
although a small change in the external 
conditions in the case of instability of motion 
leads to a jump in the behavior of the system, but 
the irreversibility will not occur. Note that 
Poincare, when he discusses the roots of 
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randomness in mechanics [82], the instability of a 
dynamical system, due to which a small cause 
generates large consequences, always 
inseparably appears with the blurring of the initial 
state (for more information, see the discussion 
below). Only the instability of the motion of the 
system's particles is not sufficient for the 
transition to irreversible chaos. 
  
Quantum mechanics. So, the question of the 
irreversibility of processes in the transition to 
thermodynamic equilibrium remains unanswered. 
Some researchers solve this problem by going 
beyond just the classical dynamic description. It 
is assumed that there is a quantum component in 
the description of any real system [15, 17, 29]. At 
the same time, the quantum equations 
themselves are also time-reversible and in this 
respect do not help to explain the irreversibility of 
the processes occurring during thermalization. 
For irreversibility, the interaction of the classical 
and quantum subsystems is necessary. So, the 
probability of the result of process B can depend 
on the results of process A only if process A took 
place before process B [15]. 
  
 
If we take the problem more broadly, then in fact 
irreversibility in quantum mechanics is closely 
related to the problem of quantum measurement. 
Even if we do not specifically measure anything 
with some measuring device, the macroscopic 
environment willy-nilly constantly acts as a 
continuous meter since it constantly interacts 
with quantum objects. The Schrodinger equation 
is time-reversible and describes the wave 
function of the system, which gives the 
probability of finding the system in a particular 
state. In accordance with the probabilistic 
description, the particle can be here and there, 
but the experimenters never see this. They 
always find a particle definitely in one position or 
another, and never see it partly here and partly 
there. During the measurement, the so-called 
collapse of the wave function occurs, and only 
one of the many possible outcomes is realized 
[17]. The Schrodinger equation itself does not 
regulate this collapse in any way. We need 
equations describing this collapse, as well as 
equations describing the development of 
decoherence in the system [17, 87]. The solution 
to the problem of the collapse of the wave 
function and decoherence could provide an 
answer to the question of the reversibility of the 
evolution of systems. Note also that if a collapse 
of the wave function occurs, i.e. there is a 
measurement in the system, then the system 

itself changes. After the measurement, we have 
a completely different system, which is partially 
degraded [88]. 
  
However, whatever the answer is, sooner or later 
we will still run into the second principle of 
thermodynamics. Eggs falling on the floor should 
break, a piece of ice immersed in a warm bath 
should melt, and not vice versa: broken eggs will 
not collect in whole, and a piece of ice will not 
grow, etc. The direction of time in one way or 
another seems to be related to the evolution of 
the entropy of the system. 
  
Another aspect of the possible influence of 
quantization on the initiation of irreversibility in 
real systems can be traced in the cycle of works 
on modeling the classical Coulomb plasma (see 
[89-93] and references therein). We will discuss 
this cycle of work in detail below. Now we note 
that in the above-mentioned works, the particle 
energy distribution function did not transform 
over time to the Boltzmann form at large 
magnitude negative energies, which was 
completely consistent with the well-known 
entropy conservation theorems. As a result, the 
plasma "refused" to recombine. Theoretically, it 
was possible to describe this behavior at the cost 
of abandoning the ratio of the detailed balance to 
the coefficients of diffusion and electron mobility. 
A different relation was proposed for the diffusion 
and mobility coefficients of the microfield nature, 
resulting in a powerful upward drift of electrons 
along the energy axis, which prevents the 
establishment of the Boltzmann distribution 
function. Why are these effects not observed in 
real experiments? In particular, the shock 
recombination process is well known in plasma, 
the rate constant of which is proportional to the 
electron temperature to the degree of "–9/2" 
(Thomson recombination). The explanation was 
given on the basis of the need to take into 
account quantum effects. Quantization will not 
prevent the proposed explanation when the 
characteristic microfield jump exceeds the 
characteristic level difference in the proton + 
electron system ( 1/n

2
, where n is the main 

quantum number), i.e., for relatively large n. 
When this ceases to be the case, the ratio of the 
mobility and diffusion coefficients of the 
microfield (multiparticle) nature should pass in 
this energy region to the two-particle ratio of the 
mobility and diffusion coefficients in accordance 
with the ratio of the detailed balance, which will 
cause recombination.  
 



 
 
 
 

Boichenko and Klenovskii; PSIJ, 25(6): 21-47, 2021; Article no.PSIJ.73908 
 
 

 
28 

 

In the parameter domain, where this effect can 
be well recorded, the recombination delay time is 
only a few times longer than the usual 
recombination time, so the effect under 
discussion cannot be unambiguously interpreted. 
  
On going over to ion-ion plasma, the difference in 
recombination times becomes significant, 
however, the creation of such a plasma is still 
problematic [94]. The problem is that the 
negatively charged ion should retain its excess 
electron for quite a long time. According to [95], 
the destruction of negative ions can be prevented 
by the solvate shell of these ions. If this turns out 
to be true, then the predicted delay in 
recombination may find its natural explanation. In 
particular, in this case, the recombination time of 
such an ion-ion plasma may already be sufficient 
to explain the nature of ball lightning and its 
lifetime (on the order of a minute). 

 
That is, in this case, the quantumness provokes 
the transition of the system to traditionally 
understood equilibrium, which in a purely 
classical approach would not take place. 
Recombination begins and, accordingly, the 
distribution function takes on a recombination 
form. 

 
Quantum statistics. When involving quantum 
mechanics in the explanation of irreversibility and 
in the attempt to explain statistical laws through 
dynamical ones, it should be borne in mind that 
in the quantum case we will deal with quantum 
statistics, which is fundamentally different from 
the classical one. This is expressed in the fact 
that in the classical case we deal with a local 
description and in the quantum case with a non-
local one [96, 97]. But these approaches are 
incompatible, which is expressed in the          
absence of hidden parameters in quantum 
systems [97]. 
  
De Broglie's attempts to circumvent the absence 
of hidden parameters in quantum systems were 
considered in [97]. It can be said that de Broglie's 
attempt of the 1950s was the last attempt at such 
an explanation, in which, as he believed, it would 
be possible to have hidden parameters in his 
previously advanced theory of the double 
solution applied to the explanation of the 
corpuscular-wave duality in the local approach. 
The problem of the presence of hidden 
parameters in the system reappears in 
connection with the Bell inequalities. It turns out 
that this problem has been known in 
mathematics for a very long time. 

The problem of the possibility of simultaneous 
realization of n random variables with given 
correlations among themselves, when these 
quantities are independent of each other but 
depend on some other random variables, arises 
within the framework of the classical probability 
theory long before the appearance of Bell 
inequalities (1964). The necessary conditions for 
such an implementation were originally obtained 
by J. Boole in the form of inequalities about 100 
years before the introduction of Bell's 
inequalities, and the general solution for a 
system of n random variables was obtained by 
N.N. Vorobyov in 1962 [98]. 
  
In the case of two particles, Bell's inequalities, 
which connect three random variables that can 
take values 1, independent of each other but 
depend on some random variable , were 
introduced to analyze the Einstein-Podolsky-
Rosen (EPR) mental experiment [99, 100]. 
Quantum mechanics presupposes a probabilistic 
description (see above), so if Bell’s inequalities 
are satisfied for non-commuting observables, 
then this leaves hope for the presence of hidden 
parameters . In other words, quantum 
probabilities and uncertainties could be reduced 
in this case to the classical theory of probability, 
and the state of the system, thus, would be 
specified not by a wave function, but by a set of 
hidden parameters. 
  

However, consideration of Bell's inequalities as 
applied to the wave function of two particles with 
zero total moment (EPR states) shows that by 
choosing the directions of the axes on which the 
projections of angular moments or particle spins 
are measured, the Bell`s inequalities can be 
violeted [101-103] for the correlators of the 
projections on the given axis [98, 104]. This 
violation is known as the EPR paradox. However, 
this behavior of quantum correlated systems is 
paradoxical only from the classical local point of 
view. If we assume the presence of non-locality, 
then we have no paradox. 
 
The generalization of Bell's inequalities in the 
case of three particles is carried out by D. 
Greenberger, M. Horn, A. Zeilinger (1989), 
starting from which a new stage in the study of 
non-locality in many-particle systems opens 
[104]. 
 

Thus, even if quantum mechanics gives us the 
key to describing the irreversibility of phenomena 
in time, it is unclear whether it will be able to 
cope with embedding in the backbone of 
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classical statistics, which is responsible for 
explaining the observed phenomena. 

 
Synergetics. Oddly enough, some clarification of 
the issues under consideration occurred as a 
result of the development of synergy. The 
equations of synergetics are not necessarily 
mechanical (and not even necessarily physical). 
They may relate, in addition to physical, and 
other various disciplines, for example, chemical, 
biological, social, etc., but they are dynamic in 
the broad sense of the word. The number of 
considered synergetic equations is constantly 
growing. Many of these equations have their own 
names: the Turing, Lorentz, Cook-Roberts, 
Brusselator, Oregonator, autowave, Eigen-
Schuster, sine-Gordon, Schlegel, Roesler, 
Volterra equations on the competition of 
biological species, etc. (see [18, 105-108] and 
references therein). In most cases, these 
equations can be represented as 

 

)(xV
dt

dx
i

i 
  

 

where xi and Vi are the some characteristics of 
object i, and therefore, the values of xi(t) can 
already be interpreted as microscopic 
coordinates (and impulses) of a dynamical 
system. However, the fundamental difference 
between the equations of synergetics and 
reversible mechanical equations, which are used 
to justify statistical laws, is that they are not 
symmetric in time and, in their overwhelming 
majority, are not Hamiltonian. Recall that for 
Hamiltonian systems, Liouville's theorem for the 
density  of a phase liquid is valid 
 

0
),,(




dt

tpqd
                                  (2) 

 

where q, p are the generalized coordinates and 
impulses of the system. But if the equations of 
synergetics are time-irreversible and not 
Hamiltonian, how can this help us when 
considering time-reversible Hamiltonian 
systems? 
 

Since the equations of synergetics are not 
Hamiltonian, they allow for a change in the phase 
density, and, consequently, in the entropy of the 
system. But at the same time, we come to the 
conclusion that when describing irreversible 
processes, the kinetic and dynamic approaches 
are not compatible with each other. The dynamic 
approach postulates the independence of the 

degrees of freedom of the system from each 
other, for which, as a result, it is possible to write 
separate dynamic equations of motion. In the 
kinetic approach, the condition 

 

0
),,(




dt

tpqd
                                     (3) 

 

can only mean the existence of a statistical 
relationship between the time functions of qi(t). 
The growth of entropy in the irreversible case in 
the kinetic approach leads to the fact that the 
phase fluid of such a system must occupy an 
increasing volume (3) of the phase space but 
must remain incompressible (2) in the dynamic 
approach. Therefore, when describing such a 
situation in the dynamic approach, the phase 
trajectory is forced to break at each point with the 
formation of a discontinuous fractal structure 
everywhere [18]. That is why the phase structure 
of synergetic systems contains strange 
attractors, whereas the phase structure of 
Hamiltonian systems cannot contain such 
attractors [18]. The closer the fractal dimension is 
to the topological one, the closer the system is to 
equilibrium. Thus, when trying to describe the 
growth of entropy in closed isolated systems in 
the dynamic approach, we come to the fact that 
we actually lose the very concept of the 
trajectory, or, if we still use the dynamic 
approach, we come to the fact that the 
trajectories in question must constantly break. 
 

We also note that in irreversible synergetic 
systems, the course of irreversible ordering 
processes is the norm, in contrast to the 
equilibrium states considered by traditional 
statistical physics. 

 

Different arrows of time. From the previous 
discussion, it can be seen that the hopes placed 
on the mechanical description of statistical laws 
have not yet been realized. Nevertheless, 
somehow it was necessary to explain the 
irreversible behavior of systems over time, so in 
parallel, there was a consideration of other 
aspects of irreversibility, which was expressed in 
the introduction of various arrows of time. Let's 
consider them as the most common in the 
literature. 

 

Thermodynamic time scale: time flows in the 
direction that contributes to the realization of the 
greatest number of possible states. In other 
words, the thermodynamic scale is closely 
related to the entropy of the system. In this scale, 
the system tends to move over time to the state 
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with the maximum statistical weight. I.e., the 
thermodynamic scale determines the direction of 
the flow of time in which the disorder grows. 

 
The cosmological arrow of time is associated 
with the expansion of the Universe (see, for 
example, [109]). This raises a lot of questions. If 
the Universe begins to collapse, then such a 
clock should turn "back". But this should not 
happen. On the one hand, for example, during 
the flight of a rocket launched from Earth, the 
change of the expansion phase to the 
compression phase of the Universe should not 
affect the movement of the rocket in any way. 
For the rocket, there is no rearrangement of any 
physical laws that determine its flight, in 
particular, the clock placed in the rocket will 
continue to run monotonously as well [110].  

 
On the other hand, in the compression phase, 
the Universe will have to return to its initial state, 
i.e., to a state of complete order, which is 
incompatible with the life of biological beings. 
Why should the initial state be characterized by 
complete orderliness? In the initial state, the laws 
of physics known to us do not work. It would be 
more natural to consider the initial state as a 
state with a complete disorder, however, for 
further consideration of the behavior of the 
Universe, we need to know the behavior of the 
various histories of the behavior of the Universe 
at the boundary of space-time in the past. In 
other words, we must know what we do not know 
and cannot know.  

 
The way out of this situation, according to [111], 
consists in the absence of space-time 
boundaries. Thus, the direction of the 
cosmological arrow of time is determined not by 
the cosmological expansion but by the condition 
of no boundaries. The coincidence of the 
directions of the cosmological and 
thermodynamic arrows is determined by the fact 
that the phase of cosmological compression is 
not observed by living beings. Before the 
compression phase, the Universe would be in a 
phase of almost complete disorder, and the 
disorder could not increase much in the 
compression phase. To live, you need to 
consume food, which appears in the form of an 
ordered form of energy, and convert it into heat, 
i.e., into an unordered form of energy. Therefore, 
there can be no intelligent life at the stage of 
compression [111]. So, when considering the 
cosmological time scale, we run into the fact that 
the determining factor for living beings is the 
thermodynamic time scale. 

The causal arrow of time: we can influence the 
future but not the past. 

 
The psychological arrow of time: we remember 
the past but not the future.  

 
This arrow is closely related to the causal arrow 
of time. The structure and principles of the 
functioning of the brain are not fully revealed, so 
the consideration of the psychological arrow of 
time is carried out in [111] on the example of the 
computer. The explanation of the direction of a 
given time arrow is also determined by the 
thermodynamic arrow. So, for example, to 
organize the memory of a computer, you need to 
expend energy for its operation. To make sure 
that the memory is in an ordered state, you also 
need to expend energy. The need for cooling 
(fan operation) also requires energy costs, etc. It 
can be shown that the increase in disorder will 
always be greater compared to the increase in 
the ordering of the computer's memory [111]. 

 

Quantum mechanical arrow of time [17, 112]: the 
direction of time is determined by decoherence 
processes and other quantum-mechanic effects, 
for example, reduction of the wave function (see 
above), etc. Note that the processes of 
decoherence lead to the degradation of the 
system, i.e. their result is also an increase in its 
entropy and, thus, the quantum mechanical 
arrow of time is closely related to the 
thermodynamic arrow. 

 

So, the defining arrow of time is ultimately the 
thermodynamic arrow of time. A whole chapter in 
[17] is devoted to the consideration of the 
justification of this provision. It should be noted 
that there are other points of view. 

 

For example, it is noted in [105] that although the 
concept of entropy and related concepts are 
extremely useful in the thermodynamics of 
irreversible processes, they turn out to be too 
crude when considering self-organizing 
structures. In general, in such structures, the 
entropy changes by a very small amount. In 
addition, it is known from statistical mechanics 
that entropy can fluctuate and thus other 
approaches are needed here [105]. 

 

The authors [107] believe that using an entropic-
negentropic language to analyze the world of 
non-stationary nonlinear processes seems to 
mean almost the same as going into the 
microcosm with an hourglass and a measuring 
tape. For the nonlinear world, other principles of 
the direction of the flow of processes, the 
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principles of the formation, unification and 
development of structures, the principles of 
economy and acceleration of evolution are    
valid. And these principles cannot                      
be achieved by fitting the classical language 
[107]. 

 
The direction of the flow of time from the point of 
view of [110] is determined by the radiation 
condition, which is not symmetric with respect to 
the past and future. The growth of entropy in this 
case is a consequence; it is formulated after the 
concept of the future has already been defined. 
As for the growth of entropy, it is convenient to 
use this condition to determine the direction of 
time growth, but in itself, it is a consequence   
and not a cause of the direction of time events 
[110]. 

 

Then we come to the nature of time as a 
philosophical category. Is it there? Or is it just a 
way of describing the world around us, invented 
by us for the convenience of this description? If 
so, does it exist by itself or only in conjunction 
with the material component? Does it have a 
beginning and an end? Was it born together with 
the birth of the Universe, i.e. it is its attribute? Is it 
continuous or discrete? Many of these aspects 
are covered, for example, in [17, 110, 111, 113-
116]. 

 

As for the issues raised in this paper, we have 
returned to the starting point. Entropy should 
increase over time. The various arrows of time 
introduced to explain its direction are actually 
closed at this stage of the development of 
physics to the thermodynamic arrow of time, i.e., 
they are determined by the growth of entropy. It 
turns out a vicious circle. On the one hand, an 
irreversible transition to an equilibrium state with 
an increase in entropy must occur over time. On 
the other hand, the irreversibility of the processes 
in time (i.e., the arrow of time) is associated with 
the growth of entropy, which determines the 
direction of time, i.e. its arrow. As can be seen 
from the above discussion, an attempt to justify 
such behavior inherent in the consideration of the 
statistical description of systems, involving a 
dynamic description of the same systems, does 
not lead to success. At the moment, there is no 
justification for the statistical behavior of systems 
by their mechanical description. 
 

1.2 Equilibrium. What Happens to 
Entropy? 

 

It would seem quite natural to try to describe the 
growth of entropy during the transition to 

equilibrium in statistically considered closed 
systems through their mechanical description. 
Such attempts, made for more than a hundred 
years and described above, did not lead to 
success. But let's ask ourselves why? Why is it 
impossible to justify the statistical behavior of 
systems by considering their mechanical 
behavior? Or maybe it's just not possible? 
Generally speaking, there are serious obstacles 
to this. After all, there are strictly proven 
theorems on the conservation of entropy in 
closed systems in both the classical and 
quantum cases [88, 117, 118]. 

 
On the one hand, according to these theorems, 
the entropy of closed systems should not change 
but on the other hand, it should increase. Why its 
growth most often is observed in real systems? 
In this regard, the cycle of works (see [89-93] 
and references in them) is of interest. When 
considering the classical Coulomb plasma by 
numerical modeling methods, it turned out that 
the plasma does not "want" to recombine. The 
equations of motion of charges as classical 
particles moving in accordance with Newton's 
equations were solved numerically. When 
different initial conditions were set, the charge 
distribution function after some time passed into 
a stationary state, the form of which did not take 
the form of Boltzmann distribution in the limit of 
large magnitude negative energies. The 
distribution function of the charge system began 
to follow the basic laws of statistical mechanics 
only when the stochastiser was "turned on". 
Stochastisers of various types were used: 
calculation with different counting errors; 
introduction of rough walls, resulting in diffuse 
reflection of particles from them (i.e. with a 
random direction inside the volume under 
consideration); introduction of thermostatic walls, 
when reflection occurred with a random direction 
of velocity and kinetic energy; permutation 
stochastisation, when the coordinates of the 
particles did not change but the directions of 
motion of the particles were randomly 
redistributed (the speed of one particle was 
assigned to another, the speed of another to the 
third particle, and so on); stochastisation by 
inelastic collisions with a hypothetical gas, etc. 
The system reacted to different types of 
stochastisers with different degrees of intensity. 
 
It turned out that only in the presence of a 
stochastiser it was possible to obtain a diffusion 
form for the distribution function, obtained using 
the principle of detailed equilibrium. The role of 
the stochastiser, according to [90], was the loss 
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of dynamic memory by the system. In other 
words, the stochastiser led to the fact that the 
trajectories of the charges began to differ 
significantly from the trajectories obtained under 
the condition of only the Coulomb interaction of 
the particles with each other. The degree of 
impact of the stochastiser on the system 
depends on its power and specifically on the 
system itself, and its resistance to changing its 
dynamic memory. For example, rounding 
numbers in numerical calculations also plays the 
role of a stochastiser, however, it was not able to 
transform the form of the distribution function to 
the desired form from the point of view of 
statistical mechanics. 

 

So, what happens in real systems? Apparently, 
in real systems, there is an uncontrolled impact 
on it. Let’s discuss some possible types of 
uncontrolled impact on systems. It was noted 
above that the instability of the trajectories of the 
particles is not enough for their stochastic motion 
to occur. According to Poincare, stochasticity will 
occur in unstable systems only if the initial state 
is blurred. Generally speaking, if the initial state 
of the system is blurred, then it is likely to remain 
blurred at other, subsequent points in time.  
 

What can be the reason for the blurring of the 
system states at any given time? Such a reason 
may be the resulting uncertainty of the 
coordinates and impulses of the particles of the 
system when it interacts with its environment. 
Whether we like it or not, when the system 
interacts with its environment, its parameters are 
continuously measured. There is no question of 
an experimenter here. In the experiment, the 
researcher takes special efforts to assemble the 
installation, allowing it to interact with the system 
to get the necessary information about the 
system from it. In the absence of an 
experimenter, the system at any given time still 
has some environment with which it interacts. 
Thus, in the case of the experimenter, the 
system is affected by the environment that he 
has chosen, and in its absence, the system is 
affected by its own environment. For example, 
when a quantum system interacts with its 
classical environment, its wave function will 
collapse at every moment of time, resulting in 
(according to the Heisenberg uncertainty 
relations) the same uncertainty of the state of the 
system under discussion. As noted above, after 
the measurement, we have a completely different 
system, which is partially degraded [88].  

 

The reason for this interaction of the system with 
its environment may also be the non-locality of 

our world [96, 97, 119]. It is shown in [97] that the 
explanation of the corpuscular-wave dualism is 
naturally obtained in the non-local approach. In 
this approach, using the string theory apparatus, 
it is possible to obtain both the wave equation for 
particles and the Heisenberg uncertainty 
relations. Thus, by virtue of non-locality, the 
system knows everything about its environment 
and takes this into account in its evolution. So, 
the possible scenario of the system behavior 
described here leads to the loss, at least, of the 
system's closure. 

 
The presence of a stochastiser or several 
stochastisers is another reason for uncontrolled 
exposure to the system. For example, it is 
described in [90] that a random periodic 
permutation of the particle velocities without 
changing the total energy of the system led to a 
deformation of the distribution function of the 
system to a diffusive form. Such a permutation, 
from the point of view of [90], led to the loss of 
the dynamic memory of the system. If we use the 
language of mechanics, then, in this case, there 
was at least a loss of the Hamiltonian property of 
the system, and for non-Hamiltonian systems, 
the entropy can already change, which is fully 
manifested in the works on synergetics (see 
above). In addition, such a stochastiser will also 
lead to a blurring of the state of the system, 
which is consistent with the consideration of the 
previous paragraph, i.e., as if to the loss of its 
closure. Note that the occurrence of the blurring 
of the state of the system, considered in the 
previous paragraph, when it interacts with its 
environment, can in turn also lead to the loss of 
its Hamiltonian character. 
 

Thus, in real systems, entropy can actually 
change, and this is possible at least in the 
examples listed above due to the interaction of 
the system with its environment and due to the 
loss of dynamic memory by the system in the 
presence of various uncontrolled stochastisers. 
These factors will lead to the loss of the closure 
and Hamiltonian nature of this system. 
 

If we ignore the factors that bring the particle 
distribution function to the canonical form in real 
systems, then the closed system itself, in 
general, will not be deformed, as a result of the 
action of the mechanical equations, to the state 
to which it should pass from the point of view of 
statistical behavior. In this case, there must be 
an increase in entropy, which cannot occur. The 
examples, where both the regular and stochastic 
components co-exist in the system (KAM-
theorem [73-76], the results of [77]) have already 
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shown this, although the analysis of the 
distribution function was not carried out directly in 
them. This was directly demonstrated in the 
numerical solution of the mechanical equations 
for a system of Coulomb particles with a 
simultaneous numerical analysis of the 
distribution function in this system [89-93]. 
 

1.3 Why was a Gravitationally Interacting 
System Chosen for the Simulation? 

 
So far, there is only one example of a detailed 
numerical study of the behavior of a mechanical 
system during its transition to equilibrium (see 
[89-93] and references therein), in which the 
particle distribution function was analyzed on the 
example of a classical Coulomb plasma. The 
consideration of other mechanical systems in 
connection with the above-mentioned features of 
the description of their statistical and mechanical 
behavior is of immediate interest. In this paper, 
we analyze the numerical behavior of point-like 
gravitationally interacting particles. 

 
It would seem that we should get approximately 
the same results since the law of universal 
gravitation and the Coulomb interaction of 
particles are functionally the same. In both 
cases, the interaction force is proportional to the 
product of the charges (in the gravitational case 
of the masses) of the particles and inversely 
proportional to the square of the distance 
between them. However, this is where the 
similarity of these systems ends. As for the 
differences between these systems, it is huge. 
The differences begin with the fact that there is 
no equivalent to negative charges, i.e., there are 
no negative masses in the gravitational 
interaction. Particles in the gravitational case 
only attract and never repel, as in the case of 
electrical interaction. It is believed that 
electrodynamics is currently the most understood 
in terms of its description and practical use 
(television, radio, etc.). Electrodynamics is 
quantized. The description of electromagnetic 
effects is possible with great accuracy. For 
example, the theoretical value of the anomalous 
magnetic moment of an electron in relativistic 
quantum electrodynamics coincides with the 
experimental value with an accuracy of up to 11 
significant digits (relative uncertainty of 2 10

–10
) 

[120-123]. 
 

As for gravity, it is not even quantized [124, 125]. 
The equality of the gravitational and inertial 
masses in General Relativity (GR) is considered 
as an exact law of nature. It is believed that this 

fact is proven in theory. But in fact, the equality of 
masses, in theory, is valid only in systems of a 
special kind, in particular, in Cartesian systems. 
In other systems, the inertial mass can take an 
arbitrary positive or negative value [124, 125]. 
There is also a more key problem of determining 
the gravitational energy and the laws of 
conservation of energy-momentum in GR. Great 
efforts to solve it did not lead to success. The 
introduction of Einstein's pseudotensor seemed 
to chart the way to solve it. But in this case, 
during space-time transformations, the energy of 
the gravitational field changes (for example, the 
Bauer paradox). K. Moeller formulates conditions 
for the pseudotensor of the gravitational field, 
which should exclude obtaining ridiculous results, 
but he proves himself the theorem that they 
cannot be satisfied in principle [124, 125], etc. 

 
The gravitational interaction occupies a special 
position among other types of interactions. After 
the failures of gravity quantization, the idea of the 
secondary nature of the curvature of space-time 
is put forward [124, 125]. It is assumed that 
gravity is not a fundamental interaction but is a 
macroscopic (long-wave) limit of a more general 
theory due to quantized fields [124, 125]. It is 
also believed (see, for example, [17]) that the 
gravitational interaction can lead to a decrease in 
entropy. Thus, as a result of the Big Bang, such 
structured objects as stars, galaxies, clusters of 
galaxies are formed from initially uniformly 
distributed matter and fields in the Universe. All 
this determined the choice of the gravitational 
interaction as the interaction in the simulated 
mechanical system considered below. 

 
However, despite the noted differences, the 
electromagnetic and gravitational interactions, 
nevertheless, should be closely interconnected. 
Since 1955, where gravitational electromagnetic 
entities was pointed [135] up to now where 
interconnections of quantum light theory, 
quantum field theory and gravitational-
electromagnetic equation [136, 137] are 
investigated, these questions are continuously 
under consideration.  

 

In addition, various effects and processes are of 
particular interest, the theoretical description of 
which is well known at the statistical level. Using 
the example of gravitationally interacting 
particles, the behavior of these particles over 
time will be modeled based on the solution of 
Newton's equations of motion. A comparative 
analysis of the characteristics of the various 
processes in the simulated particle system will be 
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carried out to find out whether well-known 
statistical effects will actually manifest 
themselves in the system under consideration. In 
this paper, the discussion will focus on relaxation 
processes. 
 

2. METHODOLOGY 
 

2.1 Modeling the Dynamics of 
Gravitationally Interacting Particles 

 
The simulation of a gravitationally interacting 
system of particles consisted in the numerical 
solution of the equations of motion inside a cube. 
The system consisted of 300 identical particles 
gravitationally interacting with each other. At the 
initial moment of time, the coordinates and 
velocities of the particles were set using a 
pseudorandom number generator: the 
coordinates and directions of the velocities were 
set in accordance with a uniform distribution; the 
velocity modules were set in accordance with the 
Maxwell distribution for a given temperature T. In 
some calculations, the velocity modules were 
taken to be the same (see below for more 
details). For each particle, the Newton equation 
was written: 
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where mi is the mass of the i-th particle 

ir


 is the 

radius-vector of the i-th particle, and G is the 
gravitational constant. 
 
The system of first-order ordinary differential 
equations was solved by the Runge-Kutta 
method of the 6th order (program code DVERK 
[126]) with an adaptive change in the size of the 
integration step. The choice of a single-step 
integration method is due to the absence of the 
need for a method initialization procedure, 
whereas multi-step methods require several 
preliminary steps, which can significantly affect 
the calculation speed when processing additional 
events. 

 
In this simulation, it was important to keep the 
particles within a given volume (cube), which 
requires additional tracking and processing of 
events (attempts of particles to leave the 
volume). The retention of particles in the cube 
was carried out by the "mirror" reflection of the 
particle from the wall of the cube and was 
realized by changing the sign of the 

corresponding component of the particle velocity 
to the opposite when the particle reached the 
boundary of the set volume. In other words, if a 
particle went beyond the cube boundary, then 
the moment of its crossing the boundary was 
determined and from that moment on, simulation 
continued but with the opposite sign in the 
velocity component normal to the wall. Note that 
the periodic boundary conditions, which are often 
used in molecular-kinetic calculations and are 
more computationally convenient, are not 
suitable for studying the fundamental properties 
of the behavior of systems (see [127] for more 
details). 

 
The interaction between the particles was 
calculated by a complete running over all the 
particles without any modifications 
(simplifications) in the nature of the interaction. 
The quality of integration of the differential 
equations was controlled by monitoring the total 
energy of the particle system. In the calculations, 
the change in the total energy of the particle 
system did not exceed 0.1% of the initial value. 
 

2.2 Relaxation Processes 
 
Systems with long-range interaction, which 
include the gravitational and Coulomb 
interactions, are usually described by the ideality 
parameter 
 

 = <U>/<Wk>, 
 
(or   

3
) representing the ratio of the average 

potential <U> energy of the system to its average 
kinetic energy <Wk> and characterizing the 
degree of the ideality of the system under 
consideration. In the ideal case,  << 1, the 
consideration of many issues related to the 
behavior of such systems is usually significantly 
simplified. 

 
To consider the relaxation, a series of 
calculations was performed in non-ideal  >> 1 
and almost ideal   1 cases. 
 
Relaxation time. In works [128, 129] the 
relaxation time  is considered in detail in an 
electron-ion plasma based on the analysis of the 
kinetic equations of the energy balance and is 
given by: 
 

 ei
4

5
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where me is the mass of the electrons, Te is the 
temperature of the electrons, e is the charge of 
the electron, ei is the charge of the ion, and ln is 
the Coulomb logarithm. 

 
In the case of charges of the same mass, it is 
somewhat modified [128, 129]. 
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When moving to the case of the gravitational 
interaction of particles of the same mass, it is 
necessary to replace the factor eie, which 
corresponds to the potential of the Coulomb 
interaction of electric charges, with the factor 
Gm

2
, which corresponds to the potential of the 

gravitational interaction of masses. 
 

3/2

7/2 2

15

16 ln

T

m G n






                       (4) 

 
where m is the mass of a particle, G is the 
Newtonian gravitational constant, n is the particle 
concentration, T is the temperature, and ln is 
the Coulomb logarithm. A thorough  
consideration of the issues related to the problem 
of cutting the Coulomb logarithm in plasma is 
presented in [130]. In the case of gravitational 
particles the Coulomb logarithm according [131, 
132] is 
 

max

0

ln ln
r

r

 
   

 
 

 
where rmax is a certain upper limit of the impact 
parameter, r0 is the impact parameter at which 
the deflection of the particle during scattering 
occurs at an angle of 90

o
. In [131], for the 

Coulomb logarithm, the expression  
 

)4.0ln(ln N                         (5) 

 
is recommended, where N is the total number of 
particles in the system. When applied to compact 
star formations with stars of approximately equal 
masses, the Coulomb logarithm is given by 
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where for spherical systems D0 is comparable in 
order of magnitude to the radius of this system, 
for clusters in the form of a disk D0 is comparable 
in order of magnitude to the thickness of the disk, 
v

2
 is the typical square of the relative velocity 

[132]. Note that there is no unambiguously 
accepted expression for the relaxation time. In 
various monographs (see, for example, [131-
134]), one can find other representations for the 
relaxation time, which differ mainly either by 
using different estimation methods or by 
accurately considering other statements of the 
relaxation problem, for example, in the 
framework of the Fokker-Planck equation [131]. 
The most voluminous derivation for the relaxation 
time (16 pages of the text) seems to belong to S. 
Chandrasekhar [134]. Of course, all these 
expressions differ from each other by a factor of 
the order of one. Because of this, we need to 
make a specific choice between them, so in this 
paper, we will use the expressions (4) and (5) for 
the relaxation time. 
 

3. MODELING AND DISCUSSION OF 
THE RESULTS  

 
Case A (  1). The calculation parameters were 
as follows: the number of particles was 300, the 
mass of a particle was 10–9 kg, the length of the 
half edge of the cube was 5 × 10

–7
 m, the initial 

kinetic energy of all the particles was the same 
Wk = 0.05 eV. The particle velocities were set to 
be the same at the initial moment of time so that 
the evolution (see Figs. 1, 2) of the distribution 
functions of the particles over the total and 
kinetic energy (or velocities) could be seen. 
Under the conditions listed above, the potential 
energy at the initial moment of time was U = –
35.7 eV (that corresponds to the average 
potential energy <U> = –0.119 eV), so that the 
modulus of the ideality parameter at the initial 
moment of time was 2.4. Substituting the value T 
= <Wk>/1.5 for the temperature in (4) and (5) one 
can obtain the relaxation time of  = 2.88 s. This 
value is in good agreement with the results of our 
numerical modeling. Indeed, the particle 
distribution was almost completely formed by 1-2 
s. It had the form of Maxwellian distribution with a 
temperature of approximately 0.08 eV. At the 
initial moment of time, it is incorrect to talk about 
the temperature of the particles since all the 
particles had the same kinetic energy. It makes 
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sense to talk about the temperature only at the 
time , for which the ideality parameter is already 
<U>/<Wk> = 1.66. 
 

The relaxation time obtained in the numerical 
simulations coincides well with the time obtained 
in the theoretical consideration of relaxation 
processes. However, the question arises: until 
what time should the calculations be performed 
to be completely sure that the relaxation process 
is over? It may turn out that the system will 
continue to evolve. For example, the relaxation 
time in numerical experiments can be 
significantly longer than , and then on time 
scales of the order of , the changes in the 
distribution function are simply almost 
imperceptible. In this case, the virial theorem 
comes to the rescue. In systems with 
gravitational interaction, the average value of  
should be 2 if particles occupy a limited volume. 
If we remove the walls in the calculations, then  
goes to the value of 2 by about 0.5 s and then 
does not change. At the same time, the particles 
continue to move in a compact region without 
escaping, despite the absence of any 
boundaries. Consequently, there will be no 
further redistribution of the values of the kinetic 
and potential energies in the system. 
 

Therefore, in Fig. 1d and 2d we have the final 
form of the distribution functions established in 
the system. As for Fig. 1d, then we see nothing 
surprising here – the kinetic energy distribution 
function has acquired a Maxwellian form, as it 
should be. As for the function in Fig. 2d, then it is 
in no way similar to the canonical Gibbs 
distribution (1). The reasons for this have been 
discussed in sufficient detail above, so we will 
not repeat them. 
 

Case B ( >> 1). The calculation parameters 
were as follows: the number of particles was 300; 
the particle mass is 10

–7
 kg; the particle 

temperature was T = 10–2 eV (initially the 
Maxwellian distribution); the length of the half 
edge of the cube is 5 10–3 m. In this case, the 
particle velocities were not set to be the same at 
the initial moment of time. As can be seen (Figs. 
3, 4), there are no significant differences in the 
evolution of the particle distribution functions 
over the total and kinetic energies (or velocities) 
in comparison with the previous case. Under the 
conditions listed above, the potential energy at 
the initial time was U = –36.2 eV, so that the 

modulus of the ideality parameter at the initial 
time was 8.04 (if we take into account that <Wk> 
= 1.5T), while the relaxation time according to (4) 
and (5) should be 1.34 10

4
 s. This value is in 

good agreement with the result of the numerical 
modeling. Indeed, the particle distribution       
was almost completely formed by 1.5×10

4
-2×10

4
 

s. It had the form of Maxwellian distribution with a 
temperature of approximately 0.12 eV. 
 
The relaxation time obtained in the numerical 
simulations coincides well with the time obtained 
in the theoretical consideration of relaxation 
processes. Just as in the first case, the average 
value of  should be 2. If we remove the walls in 
the calculations, then this ratio goes to the value 
of 2 to about 25000 s and then does not change. 
Therefore, there will be no further redistribution 
of the values of the kinetic and potential energies 
in the system. Just as in the first case, the 
particles continue to move in a limited area 
without escaping. 
 

Here (Fig. 3d, 4d) the situation is almost exactly 
the same as in the case A (see the description of 
case A in more detail) for the distribution 
functions considered in it (Figs. 1d, 2d). The 
kinetic energy distribution function becomes 
Maxwellian (Fig. 3d), while the total energy 
distribution function is far from the canonical 
Gibbs distribution (Fig. 4d). 
 

Earlier we noted (see section Systems in 
equilibrium) that if we carry out the analysis in 
the language of entropy, then in equilibrium in 
the case of the canonical Gibbs distribution, the 
system should have the largest possible entropy, 
i.e. to be in the greatest degree of disorder. It is 
believed that only in this case, when the system 
has a Gibbs distribution, we can assert that the 
system is in equilibrium. The total energy is 
reduced into terms that depend on velocities 
(kinetic energy) and coordinates (potential 
energy). This, in turn, leads to the fact that in this 
state the velocity distribution in the system 
should be Maxwellian. From the present 
simulation, we see that the system has come to 
equilibrium, its distribution function is not 
canonical Gibbs distribution, but, nevertheless, 
the velocity (or kinetic energy) distribution is 
Maxwellian. In other words, the greatest degree 
of disorder in the system occurs not over the 
entire energy, but only over its kinetic 
component. 
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Fig. 1a. Case A. Distribution functions of particles on the kinetic energy at times 0.01 (solid), 
0.05 (dashed), and 0.1 s (dotted). 

 

0.0 0.1 0.2 0.3 0.4 0.5

0

2

4

6

8

10

P
ro

b
a

b
ili

ty
 d

e
n

si
ty

Kinetic energy (eV)

 0.5 s
 1 s
 5 s

 
 

Fig. 1b. Case A. Distribution functions of particles on the kinetic energy at times 0.5 (solid), 1 
(dashed), and 5 s (dotted). 
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Fig. 1c. Case A. Distribution functions of particles on the kinetic energy at times 10 (solid), 30 

(dashed), and 40 s (dotted). 
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Fig. 1d. Case A. Distribution functions of particles on the kinetic energy at times 1-40 s (thin 

lines), Maxwell distribution function for temperature of 0.08 eV (heavy line). See Figs. 1b, 1c for 
details. 
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Fig. 2a. Case A. Distribution functions of particles on total energy at times 0.01 (solid), 0.05 
(dashed), and 0.1 s (dotted) 
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Fig. 2b. Case A. Distribution functions of particles on total energy at times 0.5 (solid), 1 
(dashed), and 5 s (dotted). 
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Fig. 2c. Case A. Distribution functions of particles on total energy at times 10 (solid), 30 
(dashed), and 40 s (dotted) 
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Fig. 2d. Case A. Distribution functions of particles on total energy at times 1-40 s. See Figs. 2b, 
2c for details 
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Fig. 3a. Case B. Distribution functions of particles on the kinetic energy at times 1000 (solid), 
5000 (dashed), and 1∙10

4
 s (dotted) 
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Fig. 3b. Case B. Distribution functions of particles on the kinetic energy at times 1.5∙10
4
 (solid), 

2∙104 (dashed), and 2.5∙104 s (dotted) 
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Fig. 3c. Case B. Distribution functions of particles on the kinetic energy at times 5∙10
4
 (solid), 

1∙10
5
 (dashed), and 4∙10

5
 s (dotted) 
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Fig. 3d. Case B. Distribution functions of particles on the kinetic energy at times 2∙104-4∙105 s 
(thin lines), Maxwell distribution function for temperature of 0.12 eV (heavy line). See Figs. 3b, 

3c for details 
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Fig. 4a. Case B. Distribution functions of particles on total energy at times 1000 (solid), 5000 
(dashed), and 1∙10

4
 s (dotted) 
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Fig. 4b. Case B. Distribution functions of particles on total energy at times 1.5∙10
4
 (solid), 2∙10

4
 

(dashed), and 2.5∙104 s (dotted) 
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Fig. 4c. Case B. Distribution functions of particles on total energy at times 5∙104 (solid), 1∙105 
(dashed), and 4∙10

5
 s (dotted) 
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Fig. 4d. Case B. Distribution functions of particles on total energy at times 2∙10
4
-4∙10

5
 s. See 

Figs. 4b, 4c for details 

 
4. CONCLUSIONS 
 

Numerical simulation of the behavior of classical 
particles interacting gravitationally with each 
other was carried out. The conducted modeling is 
directly related to the question of the possibility of 
substantiating the statistical behavior of classical 
mechanical systems on the basis of their 
mechanical behavior. The cases with the ratio of 
the potential energy to the kinetic energy of   1 
at the initial moment of time were considered. 
The main results obtained in the work can be 
summarized as follows. 
 

1.  The relaxation time of the system obtained 
on the basis of the numerical simulation is in 
good agreement with the relaxation time 
obtained in a large number of studies using 
various approximations. 

2.  However, purely the gravitational interaction 
of particles does not lead to the formation of 
the particle energy distribution function of 
Boltzmann form in the region of large 
magnitude negative energies. Such a 
behavior must occur in accordance with the 
known theorems when the system 
approaches its equilibrium. Almost more than 
a century of attempts have been made to 
justify such a transition and to concordance 
the statistical and mechanical approaches in 
such a transition. 

3.  On the other hand, such a behavior should 
not also occur in accordance with known 
theorems. The transition to the equilibrium 
corresponds, in the language of entropy, to 
the transition of the system to the state with 
the highest possible entropy. However, the 
well-known entropy conservation theorems 
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of mechanical closed systems in both the 
classical and quantum cases prevent such a 
transition since the entropy of such systems 
cannot change. 

4.  Thus, the current work demonstrates another 
example of a system in which, when 
approaching its equilibrium, the distribution 
function does not take the canonical form if 
the system does not involve any other 
factors besides its mechanical behavior. 
Earlier, a similar result was demonstrated by 
the example of a classical Coulomb plasma. 

5.  Thus, it is generally impossible to justify the 
transition of the distribution function of a 
closed system in equilibrium to the canonical 
Gibbs distribution only on the basis of its 
mechanical behavior for systems with long-
range Coulomb or gravitational interactions. 
For such a justification, it is necessary to 
take into account the presence of other 
processes in the system in addition to only 
the mechanical interaction of particles with 
each other. For example, the system must 
have a stochastiser in one form or another, 
which will remove the ban on changing the 
entropy of closed systems imposed by the 
well-known entropy conservation theorems. 
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