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Abstract 
This paper proposes the continuous-time singular value decomposition 
(SVD) for the impulse response function, a special kind of Green’s functions, 
in order to find a set of singular functions and singular values so that the 
convolutions of such function with the set of singular functions on a specified 
domain are the solutions to the inhomogeneous differential equations for 
those singular functions. A numerical example was illustrated to verify the 
proposed method. Besides the continuous-time SVD, a discrete-time SVD is 
also presented for the impulse response function, which is modeled using a 
Toeplitz matrix in the discrete system. The proposed method has broad ap-
plications in signal processing, dynamic system analysis, acoustic analysis, 
thermal analysis, as well as macroeconomic modeling. 
 

Keywords 
Singular Value Decomposition, Impulse Response Function, Green’s  
Function, Toeplitz Matrix, Hankel Matrix 

 

1. Introduction 

Impulse response function (IRF) has been considerably used for signal processing, 
dynamic system analysis, acoustic analysis, thermal analysis, and macroeco-
nomic modeling. The significance of such function is that for any input, the 
output can be calculated in terms of the input and the impulse response. To de-
termine an output directly in the time domain requires the convolution of the 
input with the impulse response, which is very complicated. Therefore, it is 
usually to calculate the Laplace transform of a system’s output by the multiplica-
tion of the Laplace transform of the IRF with the input’s Laplace transform in 
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the frequency domain at first; and then find the output in the time domain 
through an inverse Laplace transform.  

This study proposes a direct method to calculate the system output through 
the singular value decomposition (SVD) algorithm. As a popular technique of 
factorizing a matrix, a variety of forms of SVD have been developed recently and 
applied for solving a wide range of scientific and engineering problems. For ex-
am, Ramirez-Velarde et al. used SVD on the video correlation matrix to perform 
the principal component analysis [1]. Liu et al. developed an SVD-based minutia 
matching method for finger vein recognition, which performs better than other 
methods [2]. Wan et al. proposed a quasi SVD method to extract algebraic fea-
tures from human face with enhanced face recognition rate and speed [3]. Zhang 
et al. applied a higher-order SVD method for denoising magnetic resonance data 
to improve the inspection quality and reliability of quantitative image analysis 
[4]. Shih et al. proposed an adaptive parametrized block-based SVD for preserv-
ing the edge structure and avoiding blurred image after the compressing process 
[5]. Ghazy et al. presented a block based watermarking scheme using the SVD 
algorithm to embed encrypted watermarks into digital images. Experimental re-
sults showed that the SVD-based method is superior to the traditional method 
for embedding encrypted watermarks and extracting them efficiently under at-
tacks [6]. Cai et al. used SVD for model predictive control design of distribution 
systems and demonstrated the advantages of their method through two case stu-
dies [7]. Katsaounis et al. derived a new way to detect combinatorial equivalence 
of symmetric factorial designs based on the SVD of design matrices to provide a 
fast screen for non-equivalence [8]. Berenguer et al. used SVD of successive ite-
rated solutions on subdomains interfaces to computing a low-rank approxima-
tion of the Aitken’s formula at a high computational efficiency. The results were 
then applied for solving heterogeneous 3D groundwater flow problems [9]. di 
Dio applied SVD for analyzing temperature dependent radial distribution func-
tions and showed that the generality of the SVD approach allows investigating 
various temperature dependent structures in a unified way [10]. Abuturab pro-
posed a new color image security system based on SVD in gyrator transform 
domains and proved robustness and other advantages of the developed method 
in enhancing the security [11]. Kavaklioglu applied SVD for modeling Turkey’s 
electricity consumption, in which the SVD was used to reduce the dimensionali-
ty of the problem and to provide robustness to the estimations [12]. However, in 
the previous studies, SVD was only applied for discrete systems (matrices) and 
this paper aims to present a continuous-time SVD approach for the first time to 
facilitate the calculation of convolution of a set of singular functions and the IRF 

( )e t τ− − . 

2. Continuous-Time SVD of ( )te− −τ  

Given an impulse response function (Green’s function) of the form: 

( ) ( ), e th t ττ − −=  
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The analysis below shows how to find a set of “singular” functions ( ),f j τ  and 
singular values ( )0,1,2,jD j = �  such that: 

( ) ( ) ( )
0

, , d , ,
t

jh t f j D f j T t t Tτ τ τ = − ≤∫               (1) 

The left hand side of Equation (1) is Duhamel’s integral [13] for an input 
( ),f j t , where the ( ) ( ), e th t ττ − −= . 

Conjecture 1: ( ) ( ), sin j jf j τ ω τ φ= +  
Proof 
If conjecture 1 is correct, Equation (1) then becomes: 

( ) ( )
0
e sin d e sin ,

t t
j j j j jD T t t Tτ ω τ φ τ ω φ + = − + ≤ ∫          (2) 

The complete solution process for Equation (2) includes three steps: 1) sim-
plification of left hand side of Equation (2); 2) simplification of right hand side 
of Equation (2); 3) solve the simplified Equation (2). 

Step 1: Simplifying ( )0
e sin d

t
j j

τ ω τ φ τ+∫  
The integral on left hand side of Equation (2) can be solved as: 

( )
( ) ( ) ( ) ( )

0

2 2

e sin d

e sin e cos sin cos

1 1

t
j j

t t
j j j j j j j j

j j

t t

τ ω τ φ τ

φ ω ω φ ω φ ω φ

ω ω

+

+ − + −
= −

+ +

∫
      (3) 

The first term on the right hand side of Equation (3) can be simplified as: 

( ) ( ) ( )( )
2 2

sin atane sin e cos
e

1 1

t t
j j jj j j j j t

j j

tt t φ ω ωφ ω ω φ ω

ω ω

+ −+ − +
=

+ +
     (4) 

In order to find jφ  to satisfy Equation (3), the second term on the right hand 
side of that equation can be set to zero: 

( ) ( )sin cos 0j j jφ ω φ− =                       (5) 

Solutions of the above equation are: 

( )atanj j nφ ω= − π                         (6) 

Substituting Equations (4) and (5) into (3), a more compact form can be ob-
tained as: 

( ) ( )( )
0 2

sin atan
e sin d e

1

t j j jt
j j

j

t
τ

φ ω ω
ω τ φ τ

ω

+ −
+ =

+
∫            (7) 

Replace jω  with jφ  using Equation (6) and the left hand side of Equation 
(2) can be eventually simplified as: 

( ) ( ) ( ) ( )
0 2 2

sin 1 sin
e sin d e e

1 1

n
t j jt t

j j

j j

t n t
τ

ω ω
ω τ φ τ

ω ω

− −
=

+

π
+ =

+
∫       (8) 

Step 2: Simplifying ( )e sint
j j jD T tω φ− +    

Substituting Equation (6) on the right hand side of Equation (2) and using the 
identity ( ) ( ) ( )sin 1 sinn

j jt n tω ω− = −π , we can have: 
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( ) ( ) ( ) ( )e sin e 1 sin atannt t
j j j j j jD T t D T tω φ ω ω − + = − − +         (9) 

Step 3: Solve Equation (2) 
In order to satisfy Equation (2), jφ , jω  and jD  must meet some require-

ments. This step completely solves Equation (2) and discusses the characteristics 
of jφ , jω  and jD  from the final solution. Apply the obtained simplified 
terms to the original problem by substituting Equations (8) and (9) into Equa-
tion (2), we can have: 

( ) ( )
( ) ( ) ( )

2

1 sin
e e 1 sin atan

1

n
j nt t

j j j

j

t
D T t

ω
ω ω

ω

−
 = − − + +

        (10) 

The term ( )e 1 nt −  can be canceled from both sides, which implies that the 
integer n will not affect the final results. Equation (10) becomes 

( )
( ) ( ) ( )

2

sin
sin atan sin atan

1
j

j j j j j j j

j

t
D T t D t T

ω
ω ω ω ω ω

ω
   = − + = − + +   +

  (11) 

Let ( )atanj j jTϕ ω ω= + , then the term ( )( )sin atanj j jt Tω ω ω− + +  in Equ-
ation (11) can be expressed expanded as: 

( )( )
( ) ( ) ( ) ( ) ( )

sin atan

sin cos sin sin cos

j j j

j j j j j j

t T

t t t

ω ω ω

ω ϕ ω ϕ ω ϕ

− + +

= − + = −
         (12) 

Because the left hand side of Equation (11) is a constant times ( )sin j tω , so if 
that equation holds true, the right hand side should also be represented as a con-
stant multiplies ( )sin j tω . Inspecting Equation (12) and we can find that that 
equation can be represented as ( )sin j tω  times a constant if and only if 

j jϕ = π  (j is an integer). In other words we have ( )atan j jT jω ω+ = π , which 
yields: 

( ) ( )tan tanj j j jj T Tω ω ω ωπ − = → − =  for an integer j          (13) 

Equation (13) is a transcendental equation with infinite roots so it is reasona-
ble to label the roots in ascending order such that: 0 1 2ω ω ω< < <�  etc. Thus, 
Equation (11) can be further reduced to: 

( ) ( ) ( )
2

sin
sin cos

1
j

j j

j

t
D t j

ω
ω

ω
 π=

+ −                   (14) 

which yields 

( )
2

1

1

j

j

j

D
ω

−
=

+
                          (15) 

For an integer j.  
Since ( )atan j jT jω ω+ = π , we have ( )atan j jj Tω ω= −π  and Equation (6) 

becomes: 

( )j jj n Tφ ω− π= −                         (16) 

As can be seen from Equations (13) and (15), the value n does not affect the 

https://doi.org/10.4236/am.2021.124024


R. Luck, Y. Liu 
 

 

DOI: 10.4236/am.2021.124024 340 Applied Mathematics 
 

results for either jD  or jω , for convenience we set n j=  to further simplify 
the solution (Equation (16)) as: 

 j jTφ ω= −                            (17) 

Thus, Equation (2) has been completely solved with solutions provided 
through Equations (13), (15), and (17). Nevertheless, 0jω =  is excluded even it 
is a solution of Equation (13) because it will lead to a trivial solution for Equa-
tions (2) and (17). Thus, the solved singular functions can be represented as 

( ) ( ), sin j jf j Tτ ω τ ω= −  and conjecture 1 is proved. 

3. Illustrative Example 

An illustrative example is presented here to validate the developed method. 
In Equation (13), we assume 10T =  and the roots of that equation can be 

found using Mathcad, which are the intersections between function curves 
( )Func1 tan 10ω= −  and Func2 ω= .  

From Figure 1, the roots for Equation (13) (with 10T = ) are determined as: 

0 0.286ω = , 1 0.576ω = , 2 0.871ω = , 3 1.17ω = , etc. However, the frequency 
increment is not constant because 1 0 2 1 3 2ω ω ω ω ω ω− ≠ − ≠ − , etc. 

Equations (15) and (17) provide values for jD  and jϕ . Let 0,1,2,3j = , 
substitute j and jω  solved from Figure 1 into Equation (15) and (17) we can 
have: 0 0.961D = , 1 0.867D = − , 2 0.754D = , 3 0.650D = − ; and 0 2.86ϕ = , 

1 5.76ϕ = , 2 8.71ϕ = , 3 11.7ϕ = . The resulting vectors are normalized as: 

( ) ( ) ( )
( )1 0

sin
, e d

t j jtf t j
M j

τ ω τ φ
τ− − +

= ∫                   (18) 

( )
( )

( )2

sin
, j j

i

T t
f t j D

M j

ω φ − + =                    (19) 

where ( )1 ,f t j  comes from the left hand side of original Equation (2) and 
( )2 ,f t j  come from the right hand side of that equation. ( )M j  is the magni-

tude of ( )0
sin d

T
j jω τ φ τ+∫ :  

( ) ( )2
0

sin d
T

j jM j ω τ φ τ= +∫                     (20) 

Figure 2 plots the normalized 1f  and 2f , which again confirms that the 
solution of Equation (2) is correct. 

 

 
Figure 1. Intersections between ( )1 tan 10f ω= −  and 2f ω= . 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
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1

2

tan ω T⋅( )−

ω

ω
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Figure 2. Comparison of ( )1 ,f t i  and ( )2 ,f t i . 

 
It deserves to be mentioned that sin(ωt) is an orthogonal function because for 
1i =  and 2j =  we have ( ) ( )0

sin sin d 0
T

i jt t tω ω =∫ . Note that T is not the pe-
riod of the sine waves. 

It needs to be noted that the numerical example in this paper was modeled 
and solved using Mathcad, the math software for engineering calculations.  

4. Discrete-Time SVD of Transformable to Symmetric  
Matrices 

As a counter part of the continuous-time SVD, a discrete-time SVD is also con-
ducted for the Green’s function ( )e t τ− − . In discrete system, such function is 
represented as a Toeplitz matrix. The entire SVD process is presented as follows. 

Given a matrix A with the following property:  
T T TR A L L A R∗ ∗ = ∗ ∗                       (21) 

where R and L are suitable orthogonal matrices. It is obvious that the product 
TR A L⋅ ⋅  is a symmetric matrix because ( )TT T T TR A L L A R R A L∗ ∗ = ∗ ∗ = ∗ ∗ . 

Equation (21) can be rewritten as: T T TL R A A R L∗ ∗ = ∗ ∗ . Let TQ L R= ∗  so 
that equation becomes ( )TT TQ A A Q Q A∗ = ∗ = ∗ . This shows that if Equation 
(21) is satisfied, an orthogonal matrix Q can be found from there and Q A∗  is 
symmetric.  

It is always possible to transform a square matrix into a symmetric matrix as 
the SVD can convert the matrix into a diagonal form, which is shown from Equ-
ations (22) to (24).  

Consider the eigenvalue decomposition of the real symmetric matrix 
TR A L∗ ∗  and if: 

T TR A L S S∗ ∗ = ∗ Λ ∗                       (22) 

where matrix S contains an orthonormal set of eigenvectors of TR A L∗ ∗  and 
the diagonal matrix Ʌ contains the corresponding eigenvalues.  

From Equation (22), A can be solved as:  
T TA R S S L= ∗ ∗ Λ ∗ ∗                      (23) 

Let T TU R S= ∗ , T TV L S= ∗  and D = Λ , Equation (23) follows that 
TA U D V= ∗ ∗                         (24) 

0 2 4 6 8 10
0.4−

0.2−

0

0.2

0.4

f1 t i,  ( )

f2 t i,  ( )

t t,  
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Equation (24) is the SVD of A.  

4.1. SVD of a Lower Triangular Toeplitz Matrix 

Let P be a permutation matrix used to reverse the order of the rows. Then P 
must be an orthogonal matrix with ones along the main antidiagonal line and 
zeros elsewhere. Thus if the matrix A is a Toeplitz matrix, then the product 
P A∗  must be a Hankel matrix. In Equation (22), if we assume R P= , A is a 
Toeplitz matrix, and L is the identity matrix L I= , then according to SVD 
theory, the matrix S should be a matrix obtained by assembling orthonormal ei-
genvectors from the Hankel matrix P A∗  and Λ is a diagonal matrix with the 
corresponding eigenvalues of P A∗  along the diagonal line. This shows that 
the singular values and the right singular vectors of a lower triangular Toeplitz 
matrix are just the eigenvalues and eigenvectors of the Hankel matrix obtained 
by flipping upside-down the lower triangular Toeplitz matrix. However, it needs 
to mention that even the eigenvalues of P A∗  can be positive or negative, the 
singular values of A must be positive.  

The following process explains how to find U and V in Equation (24) for the 
lower triangular Toeplitz matrix A.  

The eigenvalue and eigenvector for the Hankel matrix P A∗  is: 

( )( ) ( )i i iP A X Xλ∗ =                        (25) 

Since iλ  can be either positive or negative but the singular value is  must 
positive, we have:  

( ), andi i
i i i i i

i i

X X
V U sign P s

X X
λ λ

 
= = ∗ ∗ =  

 
          (26) 

For example, if matrix A is: 

5 0 0 0 0
4 5 0 0 0
3 4 5 0 0
2 3 4 5 0
1 2 3 4 5

A

 
 
 
 =
 
 
  

 

SVD of that matrix can be completed by finding U, V and D (Λ) from Equation 
(26) (please see Appendix for Mathcad codes). 

4.2. Resolve the Example in Section 3 Using Discrete-Time SVD 

In this section, the illustrative example solved in Section 3 will be resolved by the 
discrete-time SVD algorithm. For a discrete decomposition, the original conti-
nuous function ( )e t τ− −  is first discretized as 100 discrete values, from which a 
Toeplitz matrix is formed and the validated SVD process presented in Equations 
(22) to (26) is applied to find finding U, V and D for such Toeplitz matrix. Since 
the SVD algorithm has been implemented into Mathcad, so the entire process is 
solved using that software and the detailed codes are presented below, where the 
embedded figure shows the discretized function e ty −= , which is displayed 
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through 100 points. Figure 4 compares the first column of U with the discre-
tized normalized function 1f  (Equation (18)). From that figure and Figure 2, it 
is confirmed that the discrete-time SVD can correctly find the output for the IRF 
and the first column of the SVD matrix U is the discrete solution for such prob-
lem, which can be considered as a counterpart of Equation (19) in discrete do-
main. 

In Figure 3 and Figure 4, the 11iU  is the 100 point values of the discretized 
function and 11 1iU U  represents the normalized function f1 (Equation (18))  

for i from 0 to 3. ( )
1

i

i
U  is the ith column extracted from the matrix U, which  

is obtained following the discrete-time SVD process presented in Figure 3 and 
from Equations (22) to (26).  

4.3. Discussion 

In this section, the discrete-time SVD is performed to solve the problem raised 
in Equation (2) in a discrete system. From the solution it can be seen that the 
presented method can accurately yield the results, which is the ith column of the 
SVD matrix U. The critical technique employed here is to flip the lower triangle 
Toeplitz matrix upside down to convert it to a Hankel matrix through a permu-
tation matrix. Comparing to the Toeplitz matrix, which is usually used to model 
the IRF, the Hankel matrix is easier to be decoupled therefore making compu-
ting effort easier and more efficient. The same “flipping upside-down” technique 
is also applied for the continuous-time SVD (the function term ( ),f j T t−  in 
Equation (1)) to simplify the solution process.  

5. Continuous-Time SVD of ( )a te− −τ  

Section 2 presents continuous-time SVD for the Green’s function ( )e t τ− − . In re-
ality, the continuous-time SVD can be used to process a wealth of IRF’s and in 
this section the method displayed in Section 2 is pushed one-step forward by 
discussing the continuous-time SVD of ( )e a t τ− − . 
 

 
Figure 3. Comparison between the ith column of U and the discretized normalized func-
tion f1. 

0 2 4 6 8 10
0.2−

0.1−

0

0.1

0.2

Analytical vs. Numerical Eigenvector

U i〈 〉( )
i1

U1i1

U1

i1 ∆t⋅
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Figure 4. Mathcad codes for solution of the example using discrete-time SVD. 

 
Back to Equation (1) and if ( ) ( ), e a th t ττ − −= , where a is a real positive number, 

Equation (2) becomes: 

( ) ( )
0
e , d e ,

t a at
jf j D f j T tτ τ τ = −∫                  (27) 

Let pt at=  and p aτ τ= , then it follows that d dp aτ τ=  and the integra-
tion limits become 0 p ptτ≤ ≤ . Substituting them back into the integral Equa-
tion (27) and we obtain: 

0

1 e , d e ,p p pt tp p
p j

T a t
f j D f j

a a a
τ τ

τ
⋅ −   

=   
   

∫             (28) 

Let ( ) ( ), sinf j t tω=  and Equation (28) then becomes: 

0
e sin d e sinp p pt tp p

p j

T a t
a D

a a
τ τ

ω τ ω
⋅ −   

=   
   

∫            (29) 

Now we define p a
ωω = , pTR T a= ∗  and pD D a= ∗  and Equation (29) 
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can be simplified as: 

( ) ( )0
e sin d e sinp p pt t

p p p p p p pD T tτ ω τ τ ω = − ∫            (30) 

Equation (30) follows the same form as Equation (2) and then it can be solved 
following the same approach discussed in Section 2 (Equations (3) to (17)).  

6. Conclusion 

This study presented and validated continuous-time and discrete-time SVD for 
the impulse response function, a special kind of Green’s functions. For both the 
continuous-time and discrete-time SVD, the “flipping upside-down” strategy is 
employed to simplify the solution process. Illustrative example confirms the ac-
curacy and efficiency of the present methods. Even though this paper mainly 
focuses on the SVD of the Green’s functions, it is obvious that the solution can 
follow a similar approach. Comparing to existing methods, one advantage of the 
presented method is that by using such method, the time-domain output can be 
directly determined from the convolution of the input with the IRF without 
going through Laplace and inverse Laplace transforming. Considering the diver-
sity of impulse response functions involved in multidisciplinary engineering 
problems, the method presented in this study can be extensively developed for 
broad applications. In the future, the SVD approach can be further modified to 
absorb some features of Adomian decomposition method [14] [15] [16] for be-
ing used to solve more engineering problems such as Cauchy type singular 
integral equation [17] [18], Bagley-Torvik equation [19], Fredholm inte-
gro-differential equation [20] [21] [22]. 
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