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Abstract 
In this article, by using a fixed point theorem, we study following fourth-order 

three-point BVP: 
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 where  

[ ] [ ) [ )( )0,1 0, , 0,f C∈ × +∞ +∞  [ )0,6α ∈  and 1 ,1
2

η  ∈  
. The main point to 

emphasize is that although the corresponding Green’s function is changing 
signs, by applying the fixed point theorem, we can still obtain at least two 
positive solutions and degreased solutions under certain suitable conditions. 
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1. Introduction 

The boundary value problem of fourth-order ordinary differential equations 
(BVP for short) has attracted much attention due to its amazing application in 
engineering, physics, material mechanics, fluid mechanics and so on. Many au-
thors use Banach contraction to study the existence of single or multiple positive 
solutions for certain third-order BVP-Guo (Orem), Guo-Krasnoselsky (Krasno-
selsky) Fixed point theorem, Leray-Schauder nonlinear substitution, fixed point 
index theory of viewing cone, monotonic iterative technique, upper and lower 
solution method, degree theory, the Critical point theorem in a conical shell, etc. 
see [1]-[6]. 
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However, it is necessary to point out that, in most of the existing literature, 
the Greens functions involved are nonnegative, which is an important condition 
in the study on BVP Positive Solution. 

Recently, when the corresponding Green’s function is changing signs, some 
work has been done on the positive solution of the second or third order BVP. 
For example, Zhong and An [7] studied the existence of at least one positive so-
lution of the following second-order periodic BVP with positive and negative 
transformation Green’s function  

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

3 2 , 0 ,

0 ,

0 .

u t u f u t T

u u T

u u T

ρ λ + = < <
 =
 ′ ′=

 

where 30
2T

ρ Π
< ≤ . The main tool used is the fixed point index theory of cone  

mapping 2008, for a singular third-order three-point BVP of Green’s function 
with infinite signature 

( ) ( ) ( ) ( )( )
( ) ( ) ( )

3 , , 0 1,

0 1 0.

u t a t f t u t t

u u u η

 = < <


′′= = =
 

where 17 ,1
24

η  ∈ 
 

. Palamide and Smirlis [8] discussed the existence of at least  

one positive solution. Their technique is a combination of Guo-Krasnosel’sski 
fixed point theory and the corresponding vector field characteristics. In 2012, 
Sun and Zhao [9] [10] obtained single or multiple positive solutions with 
three-point positive and negative BVP by applying the fixed point theory of 
Guo-Krasnosel’skii and Leggett-Williams.  
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
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where 1 ,1
2

η  ∈ 
 

. For relevant results, one can refer to [11]-[18]. It is worth  

mentioning that there are other types of achievements on either sign-changing 
or vanishing Green’s functions which prove the existence of sign-changing solu-
tions, positive in some cases, see [11] [19] [20] [21] [22]. 

Inspired and inspired by the above works, this article focuses on the following 
fourth-order three-point BVP with the iconic Green’s function.  
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Throughout this paper, we always assume that [ )0,6α ∈  and 1 ,1
2

η  ∈  
.  

Obviously, the BVP (2.1) is a special case of the BVP (2.2). However, it is neces-
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sary to point out that this paper is not a simple extension of [23], which is dif-
ferent from the restriction in [23]. On the other hand, compared with [23], we 
can only prove that the obtained solution is concave on [ ]0,η . 

Our main tool is the following well-known Guo-Krasnoselskii fixed point 
theorem [24] [25]: 

Let K be a cone in a real Banach space E. 
Definition 1.1. A functional : K Rρ →  is said to be increasing on K pro-

vided ( ) ( )x yρ ρ≤  for all ,x y K∈  with x y≤ , where x y≤  if and only if 
y x K− ∈ . 

Definition 1.2. Let [ ): 0,Kφ → +∞  be continuous. For each 0d > , one de-
fines the set  

( ) ( ){ }, :K d u K u dφ φ= ∈ <  

Theorem 1.1. Let ρ  and φ  be increasing, nonnegative, and continuous 
functionals on K, and let ϕ  be a nonnegative continuous functional on K with 
( )0 0ϕ =  such that, for some 0c >  and 0M > ,  

( ) ( ) ( ) ( ),u u u u M uφ ϕ ρ φ≤ ≤ ≤  

for all ( ),u K cφ∈ . Suppose there exist a completely continuous operator 
( ): ,T K c Kφ →  and 0 a b c< < <  such that  

( ) ( ) ( )for 0 1, , ,u u u K bϕ ξ ξϕ ξ ϕ≤ ≤ ≤ ∈∂  

and 
(H1) ( )Tu cφ >  for all ( ),u K cφ∈∂ ; 
(H1) ( )Tu bcϕ <  for all ( ),u K bϕ∈∂ ; 
(H3) ( ), 0K aρ ≠  and ( )Tu aρ >  for all ( ),u K aρ∈∂ . 
Then T has at least two fixed points *u  and **u  in ( ),K cφ  such that 

( )*a uρ<  with ( )*u bϕ < , 

( )**b uϕ<  with ( )**u cφ < . 

2. Preliminaries 

The remainder of this paper, we assume that Banach space [ ]0,1C  is equipped 
with the norm [ ] ( )0,1maxtu u t∈= . 

For the following BVP:  

 

( ) ( ) ( )( ) [ ]
( ) ( ) ( )
( ) ( )

4 , , 0,1 ,

0 0 1 0,
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u t f t u t t

u u u

u u

λ

α η

 = ∈
 ′ ′′= = =
 ′′′+ =

                 (2.1) 

then we have the following lemma. 
Lemma 2.1. The BVP (2.1) has only trivial solution. 
Proof. Easy to check. 
Now, for any [ ]0,1y C∈ , we consider the boundary value problems  
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( ) ( ) ( )( ) [ ]
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u u u

u u
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α η

 = ∈
 ′ ′′= = =
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                (2.2) 

After a direct computation, one may obtain the expression of Green’s function 
( ),G t s  of the BVP (2) as following: 
For s η≥   
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and s η<   

( )

( ) ( )( )
( )

( ) ( ) ( )( )
( )

33 3

33 33

6 1 1 1
0 ,

6 6
,

6 1 1 1
1

6 6 6

t t s
t s

G t s
t t st s

s t

α

α

α

α

 − − − −
 ≤ ≤

−= 
− − − − −

+ ≤ ≤
−

 

Lemma 2.2. It is not difficult to verify that ( ),G t s  has the following charac-
teristics: 

1) If [ ]1,s η∈ , then ( ),G t s  is nonincreasing with respect to [ ]0,1t∈ . 
2) ( ),G t s  changes its sign on [ ] [ ]0,1 0,1× . In details, if ( ) [ ] [ ], 0,1 0,t s η∈ × , 

then ( ), 0G t s ≥ . If ( ) [ ] [ ], 0,1 1,t s η∈ × , then ( ), 0G t s ≤ . 
3) If s η≥ , then [ ] ( ) ( )0,1max , 1, 0t G t s G s∈ = =  such that  

 ( ), 0G t s ≥  for 0 s η≤ ≤  and ( ), 0G t s ≤  for 1sη ≤ ≤ .  

Moreover, if s η≥ , then  

 ( ) [ ] ( )max , : 0,1 1, 0,G t s t G s∈ = =  

 ( ) [ ] ( ) ( )
( )

31
min , : 0,1 0,

6 6
s

G t s t G s
α

− −
∈ = =

−
 

if s η< , then  

 ( ) [ ] ( ) ( )
( )

36 1
max , : 0,1 0, ,

6
s

G t s t G s
α

− −
∈ = =

−
 

 ( ) [ ] ( )min , : 0,1 1, 0G t s t G s∈ = =  

Now, let [ ] ( ){ }0 0,1 :K y C y t= ∈  is nonnegative and decreasing on [ ]0,1 . 
Then 0K  is a cone in C [0, 1]. 
Lemma 2.3. Let 0y K∈  and ( ) ( ) ( ) [ ]1

0
, d , 0,1u t G t s y s s t= ∈∫ . Then u is the 

unique solution of the BVP (1.2) and 0u K∈ . Moreover, ( )u t  is concave on 
[ ]0, .η  

Proof. For 0 t η≤ ≤ , we have 
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2

η ≥  we get  
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At the same time, 1
2

η >  shows that  
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For ( ),1t η∈ , we have 
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In view of 0y K∈  and 1
2

η > , we get  
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Obviously, ( ) ( )='u t y t′′′  for [ ]0,1t∈ , ( ) ( ) ( )0 0 1 0u u u′ ′′′= = = ,  
( ) ( )0 0u uα η′′+ = . This shows that u is a solution of the BVP (2.2). The uni-

queness follows immediately from Lemma 2.1. Since ( ) 0u t′ ≤  for [ ]0,1t∈  and 
( )1 0u = , we have ( ) 0u t ≥  for [ ]0,1t∈ . So, 0u K∈ . In view of ( ) 0u t′′ ≤  for 
[ ]0,t η∈ , we know that ( )u t  is concave on [ ]0,η . 

Lemma 2.4. Assume 0y K∈  then the unique solution ( )u t  of the BVP (2.2) 
satisfies 

[ ]
( ) *

0,
min
t

u t u
µ

µ
∈

≥  

where 10,
2

µ  ∈  
 and * tηµ

η
−

= . 

Proof. From Lemma 2.2, we know that ( )u t  is concave on [ ]0,η , thus for 
[ ]0,t η∈ ,  

 ( ) ( ) ( )0t tu t u uη η
η η
−

≥ +                    (2.3) 

In view of 0u K∈ , we know that ( )0u u= , which together with (2.3) implies 
that  

( ) , 0tu t u tη η
η
−

≥ ≤ ≤  

according to that  

 
[ ]

( ) ( ) *

0,
min

t
u t u u u

µ

η µµ µ
η∈

−
= ≥ =  

3. Main Results 

In this section, we are concerned with the existence of at least one positive solu-
tion of the problem (2.1). Assume that 

(C1) For each [ )0,u∈ +∞ , the mapping ( ),t f t u�  is decreasing; 
(C2) For each [ ]0,1t∈ , the mapping ( ),u f t u�  is increasing. 
Let  

 
[ ]

( ){ }*
0 0,

: min
t

K u K u t u
µ

µ
∈

= ∈ ≥  

https://doi.org/10.4236/am.2021.124022


A. Mohamed 
 

 

DOI: 10.4236/am.2021.124022 317 Applied Mathematics 
 

Then it is easy to see that K is a cone in [ ]0,1C . 
Now, we define an operator :A K K→  by  

 ( )( ) ( ) ( )( ) [ ]1

0
, , d , 0,1Au t G t s f s u s s t= ∈∫  

distinctly, if u is a fixed point of A in K, then u is a positive and nondecreasing 
solution of the BVP (2.2), by lemma 2.3 and lemma 2.4 we know, :A K K→  
although ( ),G t s  is not continuous, it follows from known textbook results, for 
example, see [26], that :A K K→ , is completely continuous. Set  

( )
( ) ( )

3
*

0 0

1 1
, d and , d

6
s

P s Q G s s
η µη µµ η

η α
− −−

= = =
−∫ ∫  

Lemma 3.1. Suppose that (C1) and (C2) hold. Moreover, If there exist three 
constants a, b and c with *0 a b cµ< < <  such that 

(F1) ( ), cf c
P

µ > , 

(F2) 
*0, b bf

Qµ
 

< 
 

, 

(F3) ( )*, af a
P

µ µ >  

then boundary value problem (1.1) has at least two positive solutions .u K∈   
Proof. First, we define the increasing, nonnegative, and continuous function-

als φ , ϕ  and ρ  on K as follows:  

( )
[ ]

( ) ( )
0,

min ,
t

u u t u
µ

φ µ
∈

= =  

( )
[ ]

( ) ( )
,1

max ,
t

u u t u
µ

ϕ µ
∈

= =  

( )
[ ]

( ) ( )
0,1

max 0 .
t

u u t uρ
∈

= =  

Obviously, for any u K∈ , ( ) ( ) ( )u u uφ ϕ ρ= ≤ . At the same time, for each 
u K∈ , in view of ( ) [ ] ( )0,mintu u t uµφ µ∈= ≥ ∈ , we have  

( )*

1 for .u u u Kφ
µ

≤ ∈  

Furthermore, we also note that ( ) ( )u uϕ ξ ξϕ=  for 0 1ξ≤ ≤ , u K∈ . 
Next, for any u K∈ , we claim that  

 ( ) ( )( )1
, , d 0G s f s u s s

µ
η ≥∫                    (3.1) 

In fact, it follows from (C1), (C2), and 
4

16
αη

α
+

≥
−

  

( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( )

( )( )
( ) ( )( )

1

1

33 33

33
1

, , d

, , d , , d

6 1 1 1
d

6 6 6

1 1
, d

6 6

G s f s u s s

G s f s u s s G s f s u s s

ss
y s s

t s
f s u s s

µ

η

µ η

η

µ

η

η

η η

η αηη
α

α

α

= +

 − − − −− ≤ +
− 

 

− − −
+

−

∫

∫ ∫

∫

∫
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( )( ) ( ) ( ) ( )( )
( )

( )( )
( )

( )( )
( ) ( ) ( )

( ) ( )
( )( )

( ) ( )

33 33

33
1

3 4 2 3 2

3 4

3 4 2 3

6 1 1 1
, d

6 6 6

1 1
d

6 6

,
1 24 18 1 36 3 6 23

24 6

4 24 6

, 20 6971 24 18 10 0,
24 6 27 81

ss
f u s

s
s

f u

f u

η

µ

η

η αηη
η η

α

αη

α

η η
αη η η η µ η αη αη

α

µ η α µ α

η η
αη η η η η η

α

 − − − −−
= +

−
− − −
+

− 


≥ − + − − + + − −−

+ − + − 

 = − + − + + − − ≥ −  

∫

∫

 

Now, we assert that ( )Au cφ >  for all ( ),u K cφ∈∂ . To prove this, let  
( ),u K cφ∈∂ ; that is, u K∈  and ( ) ( )u u cφ µ= = . Then  

 ( ) ( ) [ ], 0, .u t u c tµ µ≥ = ∈                     (3.2) 

Since ( )( )Au t  is decreasing on [ ]0,1 , it follows from (3.1), (3.2), (C2), (C1) 
and (F1) that  

 

( ) ( )( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

( )

1

0

0 0

0

, , d

, , d , , d

, d .

Au Au Au G s f s u s s

G s f s u s s G s f c s

c G s s c
P

µ µ

µ

φ µ η η

η η µ

η

= ≥ =

≥ ≥

> =

∫

∫ ∫

∫

 

Then, we assert that ( )Au bϕ <  for all ( ),u K bϕ∈∂ . To see this, suppose that  

( ),u K bϕ∈∂ ; that is, u K∈  and ( )u bϕ = . Since ( ) ( )* *

1 1u u uφ ϕ
µ µ

≤ = , 

we have  

 ( ) [ ]*0 , 0, .bu t u t η
µ

≤ ≤ ≤ ∈                  (3.3) 

In view of the properties of ( ),G t s , (F2), (3.3), (C1) and (C2), we get  

( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )

1

0 0

*0 0

, , d , , d

, 0, d , d .

Au Au G s f s u s s G s f s u s s

b bG s f s G s s b
Q

η

η η

ϕ η µ

µ µ
µ

= = ≤

 
≤ < = 

 

∫ ∫

∫ ∫
 

Finally, we assert that ( ), 0K aρ ≠  and ( )Au aρ >  for all ( ),u K aρ∈∂ .  

In fact, the constant function ( ),
2
a K aρ∈ . Moreover, for ( ),u K aρ∈∂ , that is 

u K∈  and ( ) ( )0u u aρ = = . Then  

 ( ) ( ) [ ]* * *0 , 0, .u t u u a tµ µ µ µ≥ = = ∈             (3.4) 

Since ( )( )Au t  is decreasing on [ ]0,1 , it follows from (F3), (3.1), (3.4), (C1) 
and (C2) that  

( ) ( )( ) ( )( ) ( ) ( )( )1

0
0 , , dAu Au Au G s f s u s sρ η η= ≥ = ∫  
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( ) ( )( ) ( ) ( )
( )

*
0 0

0

, , d , , d

, d .

G s f s u s s G s f a s

a G s s a
P

µ µ

µ

η η µ µ

η

≥ ≥

> =

∫ ∫

∫
 

To sum up, all the hypotheses of Theorem 1.1 are satisfied. Consequently A has 
at least two fixed points; that is, the BVP (1.1) has at least two positive solutions 

*u  and **u  such that 

[ ]
( )

[ ]
( )* *

0,1 ,1
max with max
t t

a u t u t b
µ∈ ∈

< <  

[ ]
( )

[ ]
( )** **

0,,1
max with min .

tt
b u t u t c

µµ ∈∈
< <  
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