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Abstract 
Consider the following system of coupled Korteweg-de Vries equations,  
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 where 2,2,u v W⊆ , 2 7N≤ ≤  and , 0iλ β > , β  

denotes a real coupling parameter. Firstly, we prove the existence of the solu-
tions of a coupled system of Korteweg-de Vries equations using variation ap-
proach and minimization techniques on Nehari manifold. Then, we show the 
multiplicity of the equations by a bifurcation theory which is rare for studying 
higher order equations. 
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1. Introduction 

It is well known that the form of the coupled nonlinear Korteweg-de Vries equa-
tions is as follows 
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, 0,
t xxx x
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φ φ φ ψ
ψ ψ ψ φ ψ
+ + =

 + + + =
                 (1.1) 

where r is a real constant, ( ) ( ), , ,x t x tφ φ ψ ψ= =  are real-valued functions of x 
and t, 0β >  is a coupling parameter and P, Q satisfy  
( ) ( ) ( ) ( ), , , , ,u vP H Q Hφ ψ φ ψ φ ψ φ ψ= =  for a small function H. Model represents 

the physical problem of describing the strong interaction of two-dimensional long 
internal gravity waves propagating on neighboring pycnoclines in a stratified fluid. 
In this paper we consider a special case of (1.1), namely the following system of 
nonlinear evolution equations:  
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We always look for solutions of (1.2) of the form  

 ( ) ( )( ) ( ) ( )( )1 2, , , , ,x t x t u x t v x tφ ψ λ λ= − −              (1.3) 

where 1 1,λ λ ∈ . Through calculating, if 0r =  we get  

 
1

1
1

2

,
,

p p

p p

u u u v
v v u v

λ β
λ β

+

+

 ′′− + =
 ′′− + =

                      (1.4) 

Now we consider it in higher dimensional cases, as follows:  
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,

u u u uv
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λ β
λ β

∆ + = +

∆ + = +

                     (1.5) 

where 2,2,u v W⊆ , 2 7N≤ ≤  and , 0iλ β > , β  is a coupling parameter. 
The system of (1.1) has been analysed many times. For example, see the re-

cently derived model by Gear and Grimshaw [1], considering  

 ( ) 3 3 2 22 2 2 1 21, ,
6 6 2 1
b a b a bH u v u v u v uv= + + +             (1.6) 

where 1 2 1 2, , ,a a b b  are constants. Moreover, the system (1.2) has been exten-
sively studied in recent years and is also a special case of a general class of non-
linear evolution equations considered in [2] in the inverse scattering context. 
More properties of the system (1.2) have been proved. Alarcon and Montenegro 
proved the local and global well-posedness results for the initial-value problem 
for (1.2) with 0, 1r p= =  in [3] and [4]. Panthee and Scialom improved the 
well-posedness results obtained in the case when 2p =  in [2]. 

As we know, many analyses about higher order equation have been done 
many years ago including the third and fifth order KdV equation. Firstly, it is 
already well known that the third order KdV equation describes the evolution of 
weakly nonlinear and weakly dispersive shallow waves in physical contexts such 
as plasma, ion-acoustic waves, stratified internal, and atmospheric waves and it 
has been analysed during the last decades. For the fifth order equation, the re-
sults are less than the third. But it has attracted increasing attentions (see 
[5]-[22]) and is used to model many physical phenomena such as gravi-
ty-capillary waves on a shallow layer and magnetosome propagation in plasmas. 
For example, Baker took the work and published in 1903; Li Xiaofeng proved the 
existence of solitary wave solutions of fifth order KdV equations in recent years. 
Santosh Bhattarai proved the existence of travelling-wave solutions of coupled 
KdV equations when it loses the compactness, using the method of concentrate 
compactness principle of Lions in 2015. 

We know that the system of higher order equations is rare. We only can find 
other similar fourth-order systems studying the interaction of the long and short 
waves have appeared. P. Lvarez-Caudevilla and E. Colorado researched the 
coupled nonlinear Schrodinger Equations (1.7) and the system of Schrodinger 
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and Korteweg-de Vries Equations (1.8).  
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and  
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λ β
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                    (1.8) 

They proved the existence of equations using the variation approach and mini-
mization techniques on Nehari manifold and the multiplicity of the equations by 
fibering map. 

But we know that there is not previous mathematics work analyzing a higher 
order system as (1.3) and we get the multiplicity of the equations by a bifurca-
tion theory which is not founded in other higher order equations article. 

We organize the paper as follows. In Section 2, we introduce the notation, es-
tablish the functional framework, define the Nehari manifold and give the main 
theorem. In Section 3, we construct semi-trivial solutions and show the proper-
ties depending on the coupling parameter. Moreover, we devoted to proving the 
main results of the paper by the variation principle and mountain-pass theorem. 
In Section 4, using the Crandall-Rabinowitz local bifurcation theory, we show 
the multiplicity of the ground state solutions. 

2. Preliminaries and Main Theorems 

In ( )2 NH  , we define the following equivalent norm and scalar product:  

 ( ) 2, : , : , , 1, 2,N ii i iu v u v uv u u u iλ= ∆ ⋅∆ + = =∫�         (2.1) 

Accordingly, the inner product and induced norm on 2 2H H×  are given by  

 
( ) ( ) ( )

( )
1 2

2 2 2

1 2

, , , ,

, ,

Nu v u v u v

u v u u

ξ η ξ η λ ξ λ η= ∆ ⋅∆ + ∆ ⋅∆ + +

= +

∫        (2.2) 

We define   the radially symmetric functions in ( )2 NH   and H H= × . 
In addition, we define the energy functional associated with system (1.5) by  

 ( ) ( )2 2 3 3 2 2
1 2

1 1 1 1
2 2 3 2N Nu v u v u vβΦ = + − + −∫ ∫ 

u         (2.3) 

and  

( ) ( )2 23 3
1 21 1

1 1 1 1, ,
2 3 2 3N NI u u u I v v v= − = −∫ ∫ 

 

are the energy functionals of the uncoupled equations. Then, we define  

 ( ) ( )[ ] ( )2 3 3 2 22 .N Nu v u vβ′Ψ = Φ = − + −∫ ∫ 
u u u u        (2.4) 

Now, we restrict the Nehari Manifold to the setting, denoting it as  

( ){ } ( ){ }\ 0,0 : 0 .= ∈ Ψ = u u  

https://doi.org/10.4236/am.2021.124021


M. Liu 
 

 

DOI: 10.4236/am.2021.124021 301 Applied Mathematics 
 

Remark 2.1. (see [23] [24] [25]) 
Let  

2 ,   if  4,
2 4

,    if  1 4.

N N
N

N

∗
 >= −
∞ ≤ ≤

 

Then we have the following Sobolev embedding:  

 ( ) ( )2 2 2 , if 4,
, for

2 < 2 , if = 4.
N p N p N

H L
p N

∗

∗

 ≤ ≤ ≠


≤
 

 
Proposition 2.1. We are going to prove some properties for   and Φ  on 
 .  

1)   is a locally smooth manifold. 
2)   is a complete metric space. 
3) ( ){ }\ 0,0  is a critical point of Φ  if and only if u  is a critical point of 

Φ  constrained on  . 
4) Φ  is bounded from below on  . 
Proof. 1) Differentiating expression (2.4) yields  

 ( )[ ] ( )2 3 3 2 22 3 8 ,N Nu v u vβ′Ψ = − + −∫ ∫ 
u u u           (2.5) 

and because of ∀ ∈u , we have the fact that ( ) 0Ψ =u .  
Then, we obtain  

 ( )[ ] ( )[ ] ( ) 2 2 23 2 0,N u vβ′ ′Ψ = Ψ − Ψ = − − <∫u u u u u u      (2.6) 

Then,   is a locally smooth manifold near any point ≠u 0  with ( ) 0Ψ =u . 
2) Let n ⊂ u  be a sequence such that 0 0n − →u u  as n → +∞ . By the 

embedding theorem, we have 0 0n pu u− →  and 0 0n pv v− →  for 2 2p ∗≤ ≤ . 
It is clear that  

 

( )[ ] ( )[ ]
( ) ( )

( ) ( ) ( )

0 0

2 2 2 22 2 2 2
0 1 0 0 1 0

3 3 3 3 2 2 2 2
0 0 0 02 .

N N N N

N N N

n n

n n n n

n n n n

u u u u v v v v

u u v v u v u v

λ λ

β

′ ′Φ −Φ

= ∆ − ∆ + − + ∆ − ∆ + −

− − − − − −

∫ ∫ ∫ ∫
∫ ∫ ∫

   

  

u u u u

 (2.7) 

Since 0 2
0nu u− →  and 0 2

0nv v− → , applying Holder's inequality, we get  

 

( )

( ) ( )( ) ( ) ( )( )

2 2 2 2
0 0

2 2 2 2 2 2

1 1
2 2 2 22 22 2

0 0 0 044

2 2
0 0 0 044 4 4 4 4

0,

N

N N

n n

n n n

N N
n n n n n

n n n n n

u v u v

u v v v u u

u v v v v v u u u u

u v v v v v u u u u

−

≤ − + −

≤ − − + − −

≤ ⋅ − ⋅ − + ⋅ − ⋅ −

→

∫
∫ ∫

∫ ∫

�

� �

� �   (2.8) 

So we have ( )[ ] ( )[ ]0 0 0n n′ ′Φ −Φ →u u u u . Because of ( )[ ] 0n n′Φ =u u , we get 
( )[ ]0 0 0′Φ =u u . Using 2

n ρ>u  and 0 0n − →u u , we get ( )0,0n ≠u . 
Hence n ∈u  and   is a complete metric space. 

Taking the derivative of the functional Φ  in the direction ( )1 2,h h=h , we 
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find  

( )[ ] ( ) ( )
( )

2 2
1 1 1 2 2 2 1 2

2 2
1 2 .

N N

N

uh uh vh vh u h v h

uv h u vh

λ λ

β

′Φ = ∆ + + ∆ + − +

− +

∫ ∫
∫

 



u h
 

The second derivative of Φ  is given by  

( )[ ] ( ) ( )2 2 2 2 2 2 2 2
1 2 2 1 1 22 4 .N Nuh vh u h v h uvh hβ′′Φ = − + − + +∫ ∫ 

u h h  

So, we have  

( )[ ]2 2 ,′′Φ =0 h h  

which is positive definite so that 0  is a strict minimum critical point of Φ . As 
a consequence, we have that   is a smooth complete manifold, and there ex-
ists a constant 0ρ >  such that  

 2 , .ρ> ∀ ∈u u                      (2.9) 

3) Assume that ( )0 0,u v ∈  is a critical point of Φ  and with  
( ) ( )[ ]′Ψ = Φu u u , then there is a Lagrange multiplier ∧∈  such that  

 ( ) ( )0 0 0 0, , .u v u v′ ′Φ = ∧Ψ                   (2.10) 

Apply both sides to ( )0 0,u v  and we can get  

 ( ) ( )( ) ( ) ( )( )0 0 0 0 0 0 0 00 , , , , , , .u v u v u v u v′ ′= Φ ∧ Ψ          (2.11) 

Combining (2.6) and (2.11), we get 0∧ = . Now (2.10) gives ( )0 0, 0u v′Φ = , i.e. 
( )0 0,u v , is a critical point of Φ . 

4) The functional constrained on   takes the form combining (2.3) and 
(2.4)  

 ( ) 2 2 21 1 ,
6 6 N u vβΦ = + ∫ u u                (2.12) 

using (2.9) and (2.12), we can get  

 ( ) 1 , ,
6
ρΦ ≥ ∀ ∈u u                    (2.13) 

So, Φ  is bounded from below on  .                               □ 
Lemma 2.1. For every ( ) ( ){ }, \ 0,0u v= ∈u , there is a number 0t >  such 

that t ∈u . 
Proof. For ( ) ( ) ( ){ }2, \ 0,0Nu v H∈   and 0t > , we have  

( ) ( ) ( )22 3 3 3 4 2 21 1 1: , .
2 3 2N Nt tu tv t t u v t u vω β= Φ = − + −∫ ∫ 

u  

On the one hand, we have ( )0 0ω =  and ( ) 2t C tω ′≥  for a small enough t. On 
the other hand, we have ( )tω → −∞  as t →∞ . So there is a maximum point 

mt  of t. Moreover we get ( ) ( ) 0m mt tω′ ′= Φ =u u  and deduce mt ∈u .   □ 
Lemma 2.2. Assume that 2 7N≤ ≤ , then Φ  satisfies the PS condition 

constrained on  . 
Proof. Suppose ( ),n n nu v= ∈u  is a sequence i.e.  
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 ( ) ( )and 0, asn nc n′Φ → Φ → →∞u u           (2.14) 

From (2.4) and (2.9), we can get nu  is bounded, then we have a weakly con-
vergent subsequence 0n ∈u u  (for convenience denoted again by nu ). 
Since H is compactly embedded into ( )PL   for 2 7N≤ ≤ , we infer that  

3 3 3 3 2 2 2 2 2 2
0 0 0 0 0, , , .N N N N N N N Nu u v v u u u v u v→ → → →∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫       

 

Moreover, using the fact that n ∈u  and (2.3), we have  

( ) ( )2 3 3 2 2 3 3 2 2
0 0 0 02 2 .N N N Nu v u v u v u vβ β ρ= + + → + + ≥∫ ∫ ∫ ∫   

u  

which implies that 0 0≠u . Letting  

 ( ) ( ) ( ) ,η′ ′ ′Φ = Φ − Ψ u u u                   (2.15) 

denotes the constrained gradient of Φ  on   with η ∈ . Taking the scalar 
product with 0n ≠u  and with ( )[ ] ( ) 0′Φ = Ψ =u u u  we can get  

( )( ), 0n n nη ′Ψ →u u  

then, taking into account (2.6) and (2.7), we deduce that nη  as 0n → . We also 
have that ( )n′Ψ u  is bounded, so with (2.13) and the fact nη  as 0n → , we 
obtain  

 ( ) ( ) ( ) 0, as .n n n n nη′ ′Φ ≤ ∇ Φ + Ψ → →∞u u u       (2.16) 

So we deduce that ( ) 0n′Ψ →u  To finish the proof, since ( )[ ]0 0′Φ →u u  as 
n →∞ , it follows that 0n → ∈u u  strongly.                         □ 

Theorem 2.1. Suppose β +> ∧ . The infimum of Φ  on   is attained at 
some �u  with ( ) ( ) ( ){ }1 2min ,Φ < Φ Φ�u u v  and both components , 0u v ≠� � . 

Theorem 2.2.  
1) Let 1 0β >  be the principal eigenvalue of  

2 2
1 , ,U Eψ ψ β ψ ψ∆ + = ∈  

and let 
1

0βψ >  be the corresponding positive eigenfunction. Then there exists 

0 0τ >  such that when ( )1 0 1,β β τ β∈ − , (1.3) has solutions ( )1 1,u vβ β  of the 
form  

( )1 1 1 ,u U oβ β β= + −  

and  

( )

( ) ( )

( ) ( )

1

1

1

1

1

1

1
1

2
1

1 13

0

N

N

v s o s

o

U
o

β β

β

β
β

β

ψ

β β
ψ β β

β

ψ
β β ψ β β

ψ

= +

−
= + −

′

= − + −∫
∫
�

�

 

2). There exists 1 0τ >  such that when ( )1 1,β τ τ∈ − , (1.3) has solutions 
( )2 2,u vβ β  of the form  
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( ) ( ) ( )

( ) ( ) ( )

12 2
2 1 1 1 1 2

12 2
2 2 2 2 1 2

2 ,

2 .

u U U U V o

v V V U V o

β

β

β λ β

β λ β

−

−

= + ∆ + − +

= + ∆ + − +
 

3. Existence Results of Semi-Trivial Solutions and  
Non-Trivial Solutions 

System (1.5) admits two kinds of semi-trivial solutions of the form ( ),0u  and 
( )0,v . So we take ( )1 1,0U=u  and ( )2 20,V=v , where 1U  and 2V  are ra-
dially symmetric ground state solutions of the equation 2 2 , 1, 2iw w w iλ∆ + = =  
in ( )2 NH  . Moreover, if we denote w a radially symmetric ground state solu-
tion of (3.1)  

 2 2 ,w w w∆ + =                         (3.1) 

then, by scaling, we can get  

 ( ) ( ) ( ) ( )4 4
1 1 1 2 2 2, ,U x w x V x w xλ λ λ λ= =             (3.2) 

Hence, system (1.5) has two kinds of semi-trivial solutions ( )1 1,0U=u  and 
( )2 20,V=v  with lowest energy among all the semi-trivial solutions. 

Definition 3.1.  
1) We define new Nehari manifold corresponding to the equations of (1.5) by  

( ) { } ( ){ }
( ) { } ( ){ }

2
1 1

2
2 2

\ 0 : 0 0 ,

\ 0 : 0 ,

N

N

u H J

v H J v

= ∈ =

= ∈ =

�

�




 

where  

( ) ( )[ ] ( ) ( )[ ]1 1 2 2: , : .J u I u u J v I v v′ ′= =  

Let us define the tangent space to   on 1u  and 2v  by  

( )[ ]{ }
( )[ ]{ }

1

2

2 2
1

2 2
2

: 0 ,

: 0 ,

T H H

T H H

′= ∈ × Ψ =

′= ∈ × Ψ =





u

v

h u h

h v h
 

And define the tangent space to 1  on 1U  and 2  on 2V  by  

( ) ( )[ ]{ }
( ) ( )[ ]{ }

1

2

2
1 1 1

2
2 2 2

: 0 ,

: 0 .

N
U

N
V

T h H J U h

T h H J V h

′= ∈ =

′= ∈ =








 

We can prove the following equivalence:  

 ( ) ( )
1 1 2 21 2 1 1 1 2 2 2, , , .U Vh h T h T h h T h T= ∈ ⇔ ∈ = ∈ ⇔ ∈   u vh h  (3.3) 

If we denote by 2D Φ  the second derivative of Φ  constrained on  , using 
that 2v  is a critical point of Φ , plainly we obtain that  

( )[ ] ( )[ ]
2

2 22
2 2 , .D T′′Φ = Φ ∀ ∈ vv h v h h  

2) We define the following Sobolev constants related to 1U  and 2V ,  

 
{ } { }

2 2
2 22 1

1 22 2 2 2\ 0 \ 0
1 2

: inf , : inf ,
N N

E E
S S

U Vϕ ϕ

ϕ ϕ

ϕ ϕ∈ ∈
= =

∫ ∫ 

          (3.4) 
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and  

{ } { }2 2 2 2
1 2 1 2max , , min , .S S S S+ −∧ = ∧ =  

Proposition 3.1.  
1) If β −< ∧  then 1 2,u v  is a strict local minimum of Φ  constrained on 
 . 

2) If either β +> ∧ , then 1 2,u v  is a saddle point of Φ  constrained on  . 
Moreover  

 ( ) ( ) ( ){ }1 2inf min , ,Φ < Φ Φ


u u v                 (3.5) 

Proof. 1) Suppose 2
2Sβ < . 

For 
2

T∈ vh  one has that  

( )[ ] ( )[ ] ( )[ ]2 2 222 2 2
2 2 1 2 2 2 2 11 .ND h I V h V hβ′′ ′′Φ = Φ = + − ∫ v h v h  

For one thing, since 2
2Sβ <  and the definition of 2

2S , there exists 1 0c >  such 
that  

 2 22 2
1 2 1 1 11 1 ,Nh V h c hβ− ≥∫                    (3.6) 

For another thing, using (3.3) and the fact that 2V  is a minimum of 2I  on 

2 , there exists a constant 2 0c >  such that  

 ( )[ ]2 2
2 2 2 2 2 .I V h c h′′ ≥                     (3.7) 

Hence, using (3.6) and (3.7) we get  

 ( )[ ]2 2 22
2 1 1 2 21 ,D c h c hΦ ≥ + v h                (3.8) 

proving that 2V  is a strict local minimum of Φ  on  . 
When 2

1Sβ < , we can obtain the same result by using the same argument as 
above. 

2) Assume 2
2Sβ >  

In this case, we choose an element ( )2
1

Nh H∈�  , such that  
2

12 1
2 2 2

1 2

,
N

h
S

h V
β< <

∫�

�

�  

Now, taking ( ) 21 1,0h T= ∈�� vh  we get  

( )
222 2 2

2 1 1 2 11
0,ND h V hβ Φ = − <  ∫��

 v h  

And taking ( ) 22 20,h T= ∈�� vh  we get  

( ) ( )
22 22

2 2 2 2 2 2 2 2 .D I V h c h   ′′Φ = ≥   
��

 v h  

Hence, 2V  is a saddle point of Φ  on  . 
When 2

1Sβ >  we can obtain the same result using the same argument as 
above and obviously inequality (3.5) holds.                             □ 

Next, we will give the proof of Theorem 2.1 and Theorem 2.2. 
Proof. By the Ekelands variational principle [26], there exists a minimizing 
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sequence n ∈u , i.e.,  

( ) ( ): inf , and 0.n nc ′Φ → = Φ Φ →
u u  

Due to the Lemma 2.2, there exists ∈� u  such that  

as .n n→ →∞u u  

so, u  is a minimum point of Φ  on  .                            □ 
We have ( ) 2 2,u v H H∈ × . Then there exists 0t >  such that ( ),t u t v ∈ . 

So we get  

( )2 3 3 2 222 .N Nt u v t u vβ= + +∫ ∫ 
u  

Combining  

( )2 3 3 2 22 ,N Nu v u vβ= + +∫ ∫ 
u  

we get 0 1t< ≤ . According to the definition of Φ ,  

( )

( )

22 4 2 2

2 2 2

1 1,
6 6
1
6

,

N

N

t u t v t t u v

u v

u v c

β

β

Φ = +

≤ +

= Φ =

∫

∫





u

u  

with ( ),t u t v cΦ ≥ , we get ( ) ( ), : ,u v t u t v′ ′ = Φ  is a nonnegative ground 
state solution of the system. We can conclude that both components of ′u  are 
non-trivial. In fact, if the second component 0v′ ≡ , then ( ),0u′ ′=u . So 

( ),0u′ ′=u  is the non-trivial solution of the system (1.5), Hence, we have  

( ) ( ) ( ) ( )1 1 1 1 .I u I U′ ′= Φ < Φ =u u  

However, this is a contradiction due to the fact that 1U  is a radial ground state 
solution of 2 2u u uλ∆ + = . We conclude the first component 0u′ ≠  using the 
same way. Lastly, taking into account Proposition 3.1-(2) and β +> ∧  we have  

 ( ) ( ) ( ){ }1 2min , .′Φ < Φ Φu u v                   (3.9) 

4. Bifurcation of Nontrivial Solutions 

In this subsection, we prove the existence of nontrivial solution of (1.5) by using 
local bifurcation theory (see [27]). The main results follow. 

Proof. Consider the eigenvalue problem  

 2 2
1 , ,U Eψ ψ β ψ ψ∆ + = ∈                      (4.1) 

It is well known that this problem admits a sequence of eigenvalues  
 1 20 .nβ β β< < < ⋅⋅⋅ < < ⋅⋅ ⋅                     (4.2) 

Moreover, we infer from [28] that the first eigenvalue 1 0β >  is simple and the 
principle eigenfunction 

1β
ψ  is a positive function. Set  

( ) ( ){ }1, , , ,0u v Uβ β∗ = = , We shall consider the bifurcation of nontrivial solu-
tion of (1.5) from the semitrivial branch ∗  near ( )1, ,0Uβ . To accomplish 
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this, we apply the bifurcation results of Crandall and Rabinowitz. First, we define 
F by 

( )
2 2 2

1
2 2 2

2

, ,
u u u uv

F u v
v v v u v

λ β
β

λ β
 ∆ + − −

=  
∆ + − − 

               (4.3) 

Clearly, for ( ) ( ) ( )1 1 2 2, , , , , Eφ ψ φ ψ φ ψ ∈ , one sees that  

 ( ) ( ) ( )
2 2

1
, 2 2

2

2 2
, , ,

2 2u v
u v uv

F u v
v uv u

φ λ φ φ β φ β ψ
β φ ψ

ψ λ ψ ψ β φ β ψ
 ∆ + − − −

=     ∆ + − − − 
     (4.4) 

( )( ) ( ) ( )( ) 1 2 1 2 1 2 1 2
1 1 2 2, ,

1 2 1 2 1 2 1 2

2 2 2 2
, , , ,

2 2 2 2u v u v

v v u
F u v

u v u
φ φ βφψ β ψ φ β ψ ψ

β φ ψ φ ψ
ψ ψ β ψ φ β φ φ β φψ

− − − − 
=     − − − − 

 

( )
2

2, ,
uvF u v
u vβ β

 −
=  

− 
 

( ) ( ) ( )
2

, 2

2
, , ,

2u v
v uvF u v
u uvβ
φ ψ

β φ ψ
ψ φ

 − −
=     − − 

 

We define  

 ( ) ( ) ( ) ( ) ( )
( )

2
11 1

1, 2 2
22 1

2
, , ,0 ,u v

LU
L F U

LU
φφ λ φ φ

φ ψ β φ ψ
ψψ λ ψ β ψ

  ∆ + −
= = =      ∆ + −   

 (4.5) 

From (4.1) and (4.2), we get that the null space ( ) { }11N L span βψ= . The so-

lution space of 2L  in   is 
2
1

1 : 2
j

UN span j N
x

 ∂ = ≤ ≤ 
∂  

. Hence, the null space  

( )2N L  is trivial. So the null space ( ) ( ){ }1
,0N L span βψ= , and 

1β
ψ  is the 

principal eigenfunction of (4.1). The range space of L is defined by  

 ( ) ( ){ }1
, : 0 .NR L f g E g βψ= ∈ =∫�                 (4.6) 

Thus, ( ) ( ) 1N L codimR L= = . Since 
11 0N U βψ >∫� , it follows from (5.6) that  

( ) ( ) ( ) ( )
1

1

21 1,
1

0
, ,0 0,u vF U R L

Uββ
β

β ψ
ψ

   = ≠   − 
 

Thus, we can apply the result of [27] to conclude that the set of positive solutions 
to (1.5) near ( )1 1, ,0Uβ  is a smooth curve  

 ( ) ( ) ( )( ) ( ){ }1 1 0 0, , : , ,s u s v s sβ ββ τ τΓ = ∈ −             (4.7) 

such that ( ) ( ) ( )1 0s s o sβ β β ′= + + , ( ) ( )1 1u s U o sβ = + , ( ) ( )1 1
v s s o sβ βψ= + , 

where 0 0τ >  is a small constant. Moreover, ( )0β ′  can be calculated as (see, 
for example, [29] [30])  

 ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )

1 1 1

11

3
1 1, ,

2
11 1,

, ,0 0, 0, ,
0 ,

2 , ,0 0, ,

N

N

u v u v

u v

F U

UF U

β β β

βββ

β ψ ψ ψ
β

ψβ ψ

 
 ′ = − = −

 
 

∫
∫
�

�




 (4.8) 

where   is a linear functional on   defined as ( )
1

, , Nf g g βψ= ∫ . Hence, 
we infer from (4.7) and (4.8) that for 1 0 1β τ β β− < <  
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( )1 1 1 ,u U oβ β β= + −                        (4.9) 

and  

( )

( ) ( )

( ) ( )

1

1

1

1

1

1

1
1

2
1

1 13

0

N

N

v s o s

o

U
o

β β

β

β
β

β

ψ

β β
ψ β β

β

ψ
β β ψ β β

ψ

= +

−
= + −

′

= − + −∫
∫
�

�

 

Now, we give the proof of (2). As we know, ( ) ( )( )0 1 2,w U x V x=  is the 
unique positive solution of (1.5) with 0β = . Recalling the map defined in (4.3), 
we have  

 ( ) ( ) ( )
2

1 1
1 2, 2

2 2

2
0, , ,

2u v
U

F U V
V

φ λ φ φ
φ ψ

ψ λ ψ ψ
 ∆ + −

=     ∆ + − 
         (4.10) 

It is well known that 2
3 1 12L Uλ= ∆ + −  and 2

4 2 22L Vλ= ∆ + −  are both 
invertible; hence, 0w  is nondegenerate in X2r, i.e., ( ) ( )1 2, 0, ,u vF U V  exists. We 
infer from the implicit function theorem that there exists 2 00, 0Rτ > >  and 

( ) ( ) ( )
02 2 2 0: , Rw B wβ τ τ− →  such that for any ( )2 2,β τ τ∈ − ,  

( )( ) ( )2 2 2, , , 0F w F u vβ ββ β β= = . Moreover, we can compute ( ),φ ψ . Diffe-
rentiating ( )1 2, ,F U Vβ  by β  at 0β = , because of ( )1 20, , 0F U V = , we get  

 ( ) ( ) ( )
2 2

1 1 1 2
1 2, 2 2

2 2 1 2

2
0, , ,

2u v
U U V

F U V
V U V

φ λ φ φ
φ ψ

ψ λ ψ ψ
   ∆ + − −

= = −       ∆ + − − −   
  (4.11) 

so  

 ( ) ( ) ( ) ( )1 12 2 2 2
1 1 1 2 2 2 1 22 , 2U U V V U Vφ λ ψ λ

− −
= ∆ + − = ∆ + −     (4.12) 

This gives the expression of ( )2 2,u vβ β .  

( ) ( ) ( )

( ) ( ) ( )

12 2
2 1 1 1 1 2

12 2
2 2 2 2 1 2

2 ,

2 .

u U U U V o

v V V U V o

β

β

β λ β

β λ β

−

−

= + ∆ + − +

= + ∆ + − +
 

5. Summary 

In the paper, we studied the positive radial solutions for a higher order coupled 
system of Korteweg-de Vries equations in Theorem 2.1. Moreover, we proved 
the multiplicity of the equations by a bifurcation theory in Theorem 2.2. 
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