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Abstract 
Tensor flight dynamics solves flight dynamics problems using Cartesian ten-
sors, which are invariant under coordinate transformations, rather than 
Gibbs’ vectors, which change under time-varying transformations. Three ten-
sors of rank two play a prominent role and are the subject of this paper: mo-
ment of inertia, rotation, and angular velocity tensor. A new theorem is prov-
en governing the shift of reference frames, which is used to derive the angular 
velocity tensor from the rotation tensor. As applications, the general strap-down 
INS equations are derived, and the effect of the time-rate-of-change of the 
moment of inertia tensor on missile dynamics is investigated. 
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1. Introduction 

Modeling flight dynamics with tensors enables building complex simulations by 
taking the two-step approach from tensor modeling to matrix programming. 
The new paradigm is called tensor flight dynamics. It generalizes the hitherto 
traditional vector flight dynamics as taught by Kane [1], Likins [2], Hughes [3], 
and others. Vector analysis is based on Gibbs [4], who simplified Hamilton’s [5] 
quaternions to three dimensional space, while tensor flight dynamics uses the 
Ricci and Levi-Civita [6] tensor formalism.  

A tensor of rank two is in traditional dynamics a dyad, which is expressed in a 
particular set of orthogonal unit vectors. Special rules apply for the multiplica-
tion of a dyad with a vector [2]. Hughes [3] goes one step further and uses the 
concept of vectrix to express a dyad in basis vectors.  

While vector flight dynamics uses only one dyad, i.e., the moment of inertia 
dyad, tensor flight dynamics uses three tensors of rank two, namely the moment 
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of inertia, rotation, and angular velocity tensor. Simple tensor multiplication is 
used to combine them with tensors of rank one. 

The moment of inertia tensor B
BI  of body B (superscript) referred to the 

center of mass B (subscript) is a real, symmetrical tensor. (Tensors are expressed in 
bold face, upper case for rank two and lower case for rank one). When expressed in  

body coordinates ]B , the nine elements of the 3 × 3 matrix 
BB

BI    provide the 

numerical values of the axial and products of inertia. 
The rotation tensor BAR  describes the orientation of frame B with respect to 

(wrt) frame A and is an orthogonal tensor. Let B be an airplane and A the airport. 
Then BAR  models the attitude of the airplane wrt the airport without reference 
to any coordinate system. If we want to calculate the attitude angles of the air-
craft relative to the airport, we introduce two coordinates systems ]B  and ]A  
associated with the airplane and the airport, respectively. Their transformation  
matrix [ ]BAT , containing the attitude angles, is obtained from the rotation ten-

sor expressed in either coordinate system [ ] B ABA BA BAT R R   = =    , where the 

overbar indicates the transpose of the matrix. 
The angular velocity tensor BAΩ  models the angular rate of frame B wrt 

frame A. Because it is a skew-symmetric tensor of rank two it can be contracted 
to a tensor of rank one, BAω . (For brevity, tensors of rank two are called tensors, 
while tensors of rank one are called vectors). In vector analysis the angular ve-
locity vector is called an axial vector, which has to abide by the right-hand rule, 
because, in actuality, it is contracted from a tensor of rank two. 

Tensor flight dynamics elevates the modeling of flight dynamics to a coordi-
nate-invariant form. It is based on Einstein’s Covariance Principle [7], Page 107, 
which states, “All physical laws are invariant under all coordinate transforma-
tions”. While Einstein based his special and general theory of relativity on the 
covariance principle, tensor flight dynamics, a branch of classical mechanics, ap-
plies this principle to Newton’s laws of motion.  

However, to achieve this invariance, the ordinary time derivative, must be re-
placed by a new time operator called the rotational time derivative ([8], Section 
4.2.1). The ordinary time derivative applied to a vector destroys its tensor cha-
racteristics, if the vector is subjected to a time-dependent coordinate transfor-
mation. By replacing the ordinary time operator in Newton’s Second Law by the 
rotational time derivative, the tensor characteristic of the law is maintained. 
With p the linear momentum, f the externally applied forces, and ID  the rota-
tional time derivative wrt the inertial frame I, Newton’s Second Law is expressed 
in tensor form 

ID =p f  

which is valid in all Cartesian coordinate systems even those that are related by 
time dependent coordinate transformations. 

Besides the rotational time derivative, the Euler transformation is instrumen-
tal to enable tensor flight dynamics. It governs the shift of reference frames. 
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Given frames I and B and the angular velocity tensor of frame I wrt B, IBΩ , the 
rotational time derivative of tensors of rank one x transforms from frame I to 
frame B like  

B I IBD D= +x x xΩ                        (1) 

This is a tensor relationship valid in all coordinate systems. Its equivalent in 
vector mechanics is for vector x 

d d
d d

IB

B I

x x x
t t

ω= + ×  

The proof of the Euler transformation for tensors of rank one can be found in 
[8], Appendix D. Here we present and prove the Euler transformation for ten-
sors of rank two. It is the foundation for deriving the relationship between the 
rotation tensor and the angular velocity tensor, which hitherto was based on a 
definition, both in vector mechanics [2] and in tensor flight dynamics [8], rather 
than on a strict mathematical derivation. 

The Euler transformation of tensors of rank two has some precursors in vec-
tor mechanics. In [2], Equation 8.93, we find for the dyad D and the coordinate 
systems a and b 

d d
d d

a b
ba baD D D D

t t
ω ω= + × − ×  

However, because of the ordinary time derivative, this relationship is only va-
lid for the two coordinate systems. Similarly, [3], Appendix B.4, Equation 17 
provides the relationship for the dyad D 

( )T
b b ba b b ba bD F D D D Fω ω× ×= + − 



 

where bF  is the vectrix of coordinate system b. Again, the ordinary time deriv-
ative (over-dot) limits this expression to the two coordinate systems a and b. 

As we will see, the Euler transformation of tensors of rank two has some simi-
larities with these precursors from vector mechanics, but because it is valid for 
all coordinate systems it is a true tensor concept. 

2. Euler Transformation for Tensors of Rank Two 

Though the Euler transformation for tensors of rank one is sufficient for almost 
all flight dynamics situations, this extension to tensors of rank two makes possi-
ble a proof of an important kinematic relationship, which is given in Section 3. 
Additional examples are then provided in Sections 4 and 5.  

We start with the formal statement of the new transformation, followed by the 
proof. 

Let A and B be two arbitrary frames related by the angular velocity tensor 
BAΩ . Then, for any tensor X of rank two, the following transformation of the 

rotational time derivative holds:  
A B BA BAD D= + +X X X XΩ Ω                 (2) 

The overbar indicates the transpose.  
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For the proof, we start with the Euler transformation for tensors of rank one, 
Equation (1)  

A B BAD D= +x x xΩ  

and substitute =x Xy , where y is an arbitrary tensor of rank one 

( ) ( )A B BAD D= +Xy Xy XyΩ  

Apply the chain rule 

( ) ( )A A B B BAD D D D+ = + +X y X y X y X y XyΩ  

Now the rotational time derivative of the second term on the left-hand side is 
transformed from frame A to frame B  

B BAD D= +AX y X y X yΩ  

and introduced into the previous equation 

( ) ( )A B BA B B BAD D D D+ + = + +X y X y X y X y X y XyΩ Ω  

The second terms on the left- and right-hand sides cancel; and since y is arbi-
trary, we have 

A BA B BAD D+ = +X X X XΩ Ω  

Bringing the second term on the left-hand side to the right-hand side and us-
ing the fact that the angular velocity tensor is skew-symmetric, BA BA− =Ω Ω , we 
have proven the transformation law of tensors of rank two 

A B BA BAD D= + +X X X XΩ Ω  

3. Angular Velocity Tensor 

The angular velocity tensor of rank two BAΩ  of frame B wrt to frame A is a 
skew-symmetric tensor and can therefore be contracted to a tensor of rank one 

BAω . Whether first or second rank, their derivations in the past were based on 
geometric consideration, without mathematical substantiation. Now, with the 
Euler transformation for tensors of rank two, we can provide such a mathemati-
cal derivation using the rotation tensor.  

The rotation tensor BAR  of rank two establishes the orientation of any frame 
B wrt frame A. The angular velocity tensor BAΩ  is then postulated ([8], Equa-
tion 4.47) to be obtained by 

( )BA A BA BAD= R RΩ                         (3) 

To prove this relationship, we apply Equation (2) to the rotation tensor BAR  
A BA B BA BA BA BA BAD D= + +R R R RΩ Ω  

and post-multiply the right and left-hand sides by BAR  

( ) ( )A BA BA B BA BA BA BA BA BA BA BAD D= + +R R R R R R R RΩ Ω   

The second term on the right-hand side is BAΩ , because BAR  is orthogonal 
and thus BA BA =R R E  (unit tensor). Together with the left-hand term we get 
our relationship, Equation (3). 
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What remains to be shown is that 

( )BA BA BA B BA BAD= −R R R RΩ   

is satisfied identically. We pre-multiply with BAR  and post-multiply with BAR . 
With BA BA BA BA= =R R R R E  we get 

( )BA BA B BAD= −R RΩ                       (4) 

which is almost again in the form of Equation (3). To show that, we resort to a 
trick using the fact that the rotational time derivative of the unit tensor E is zero  

( )B B AB ABD D= =E R R 0  

We apply the chain rule 

( ) ( )B AB AB B AB AB AB B ABD D D= + =R R R R R R 0  

and modify the last term, using AB BA=R R  ([8], Section 4.1.1)  

( )B AB AB AB B AB BA B BAD D D= − = −R R R R R R  

Substituting into Equation (4) we get 

( )BA B AB ABD= R RΩ  

But because BA AB=Ω Ω  ([8] Section 4.2.4.1), we obtain again our Equation (3) 
with the frames A and B reversed 

( )AB B AB ABD= R RΩ  

Because this part of the proof is satisfied identically, we have succeeded in de-
riving the mathematical relationship of the angular velocity tensor BAΩ  with 
the rotation tensor BAR  as shown in Equation (3) 

( )BA A BA BAD= R RΩ  

4. Derivation of the Strap-Down INS Equations 

Any kind of tactical missile today has a strap-down INS. Its sensors consist of 
gyros and accelerometers mounted on the missile body frame B. Integrating the 
accelerometer measurements twice yields the missile position, provided they are 
first converted to the inertial frame I with the help of the gyro measurements. 
We will derive these equations that need be programmed for the navigation 
computer. The gyros measure the angular velocity BIΩ  of the missile body B 
wrt to the inertial frame I. This measurement is related to the attitude of the 
missile by the rotation tensor BIR , as expressed by Equation (3)  

( )BI I BI BID= R RΩ  

Post-multiplying by BIR  yields the time differential equations that govern 
the attitude of the missile, given the gyro measurements 

I BI BI BID =R RΩ                        (5) 

To implement this relationship in the navigation processor we must convert 
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the tensors to matrices by introducing coordinate systems. Though BIΩ  is 
measured in body coordinates, we start by applying inertial coordinates to Equa-
tion (5)  

I I II BI BI BID R R     = Ω       

The rotational derivative wrt to frame I becomes the ordinary time derivative, 
as the coordinate system ]I  is associated (fixed) with frame I 

d
d

I
I IBI BI BIR R

t
     = Ω      

 

Because the gyro measurements are made in missile body coordinates,  
BBI Ω  , we need to introduce the coordinate transformation matrix [ ]BIT  of 

body coordinates ]B  wrt inertial coordinates ]I , [ ]I BBI BIBI BIT T    Ω = Ω      

[ ]d
d

I
B IBI BIBI BI BIR T T R

t
      = Ω        

 

Now, because the coordinate systems ]B  and ]I  are associated with frames 
B and I, respectively, there exists a relationship between the rotation tensor  

IBIR    and the transformation matrix [ ]BIT , namely 
I BIBIR T   =     ([8], 

Section 4.1.1), which we now introduce 

[ ]d
d

BI
BBI BIBIBIT T T T

t
      = Ω       

 

with [ ] [ ]BIBIT T E  =   and [ ]BI IBT T  =   ([8], Section 3.2.1.3)  

[ ]d
d

IB
BIB BIT T

t
   = Ω    

                     (6) 

here we have the nine linear differential equations to be programmed for the na-
vigation processor. The transfer alignment will provide the initial conditions.  

Applying [ ]IBT  to the measured accelerations 
BI

Ba    

[ ]I BIBI I
B Ba T a   =     

yields the acceleration in inertial coordinates, ready to be integrated for the mis-
sile’s velocity and position after a gravity compensation.  

5. Effect of Variable Moment of Inertia on Missile Dynamics 

It is common practice in flight dynamics to neglect the time-rate-of-change of 
mass except in rocketry, where the expulsion of fuel is called thrust, but consi-
dered an external force. The same simplification is made in the attitude equa-
tions of motion, where the time-rate-of-change of the moment of inertia tensor 
is neglected.  

Thomson [9] discusses this effect as early as 1966. He derives the equations of 
motion with vector notation, and uses a fixed body point as reference. Quadrelli 
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[10] addresses the variable mass effects of a supersonic inflatable decelerator us-
ing a coordinate-free approach based on Reynolds’ transport theorem from con-
tinuum mechanics. Here we use our tensor formulation to investigate the effect 
of the varying moment of inertia on a short-range air-to-air missile and refer the 
equations of motion to the center of mass.  

The attitude equations of motion are governed by Euler’s law: The inertial 
time-rate-of-change ( )*ID  of the angular momentum BI

Bl  of the body B wrt 
the inertial frame I, referred to the c.m. B equals the eternal moments Bm  ap-
plied at the c.m. B 

( )I BI
B BD =l m  

where the angular momentum is the product of the moment of inertia tensor 
B
BI  of body B referred to the c.m. B and the angular velocity BIω  of body B 

wrt the inertial frame I 
BI B BI
B B=l I ω  

Substitution into the previous equation yields 

( )I B BI
B BD =I mω  

here the moment of inertia B
BI  is a tensor of rank two, BIω  and Bm  are ten-

sors of rank one. We apply the Euler transformation for tensors of rank one, 
Equation (1), in order to shift the rotational time derivative to frame B 

( )B B BI BI B BI
B B BD + =I I mω ωΩ  

and apply the chain rule to the argument of the rotational time derivative 

 ( ) ( )B B BI B B BI BI B BI
B B B BD D+ + =I I I mω ω ωΩ             (7) 

In flight dynamics it is usually assumed that ( )B B
BD I  is negligibly small, so  

that the attitude equations of motion assume the simpler form  
B B BI BI B BI
B B BD + =I I mω ωΩ  

This assumption may be acceptable for aircraft. But is it also justified for mis-
siles, particularly for air-to-air missiles, whose fuel may be 40% of the launch 
mass and expended in less than 3 seconds? To pursue this investigation, we use a 
typical short range air-to-air missile, called AIM6 [11], and use the complete at-
titude equations of motion, Equation (7). Introducing body coordinates ]B  and 
multiplying out the matrices to obtain the scalar equations in the state variables  

[ ]BBI p q rω  =  , yields the attitude equations of motion 

( )
( ){ }
( ){ }

1 1 1

2 1 2 2 2

2 1 3 2 2

B

B

B

p m I p I

q I I pr m I q I

r I I pq m I r I

= −

= − + −

= − − + −













 

where the over-dot indicates the ordinary time derivative, and where the mo-
ment of inertia for a missile with tetragonal symmetry ( 3 2I I= ) is given in body 
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coordinates 

1

2

2

0 0
0 0
0 0

BB
B

I
I I

I

 
   =   
  

 

with the external moments [ ] [ ]1 2 3
B

B B B Bm m m m= .  

It appears that the changing moment of inertia terms introduce a lag into the 
three channels. Let’s assume the missile executes a pure yaw maneuver, then 

0p q p q= = = =   and what remains is 

32

2 2

BmIr r
I I

+ =


  

This is a simple first order lag system with the time constant 2 2T I I=  . 
However, because 2I  is negative, the time constant is negative and we are faced 
with destabilization. How serious is this effect?  

I ran a horizontal engagement of the prototype missile AIM6 using its 6 DoF 
simulation [11] and recorded 2 2,I I  at 1.345 sec, Mach=2, and lateral accelera-
tion 33 g’s. The time constant at that point is 51.195 5.745 8.911T = − = −  sec. 
Since the thrust phase lasts only 2.5 sec, the destabilizing effect should not be too 
severe. 

To see the actual evidence, I used the 6 DoF simulation without autopilot, 
which is possible because the missile is aerodynamically stable. Figure 1 displays 
the results of two runs with and without the unsteady moment of inertia, taken 
around the time of our test point at 1.345 sec.  

The unsteady effect lowers the pitch angle and increases the amplitude of the 
pitch rate. The discrepancies are small and can be neglected. With the autopilot 
engaged they are not noticeable.  

6. Conclusion 

With the proof of the Euler transformation for tensors of rank two, all elements 
of tensor flight dynamics are now in place. This transformation provides us with 
a mathematically sound derivation of the relationship between angular velocity  
 

 
Figure 1. Effect of the time-rate-of-change of moment of inertia. 

1.25 1.30 1.35 1.40 1.45 1.50Time - sec-4
.0

0
-3

.0
0

-2
.0

0
Pi

tc
h 

an
gl

e 
- d

eg

1.25 1.30 1.35 1.40 1.45 1.50Time - sec-6
.0

0-
3.

00
0.

00
3.

00
6.

00
Pi

tc
h 

ra
te

 - 
de

g/
se

c

https://doi.org/10.4236/aast.2018.32002


P. H. Zipfel 
 

 

DOI: 10.4236/aast.2018.32002 19 Advances in Aerospace Science and Technology 
 

and rotation tensor, which we used for the straight-forward derivation of the na-
vigation equations of a strap-down INS. By applying the transformation to the 
moment of inertia tensor, we could discuss how its rapidly changing values af-
fect the dynamics of an air-to-air missile. Because the effect is negligible, the 
common practice of neglecting the time-rate-of-change of moment of inertia is 
justified. 
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