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Abstract 
Some games may have a Nash equilibrium if the parameters (e.g. probabilities 
for success) take certain values but no equilibrium for other values. So there is a 
transition from Nash equilibrium to no Nash equilibrium in parameter space. 
However, in real games in business and economics, the input parameters are 
not given. They are typically observed in several similar occasions of the past. 
Therefore they have a distribution and the average is used. Even if the averages 
are in an area of Nash equilibrium, some values may be outside making the en-
tire result meaningless. As the averages are sometimes just guessed, the distri-
bution cannot be known. The main focus of this article is to show this effect in 
an example, and to explain the surprising result by topological explanations. 
We give an example of two players having three strategies each (e.g. player and 
keeper in penalty shooting) where we demonstrate the effect explicitly. As the 
transition of Nash equilibrium to no equilibrium is sharp, there may be a spe-
cial form of chaos which we suggest to call topological chaos. 
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1. Introduction 

Game theory is most often connected with the prisoner’s dilemma. Of course, it 
is just one of many games. In this game there are two inmates having two choic-
es each: confess or stay quiet. The results are summarized in Figure 1. 

As one easily sees, both staying quiet will be the best possible outcome in 
terms of a total prison sentence. However, each prisoner will personally improve 
by changing strategy. Therefore, both staying quiet is not a stable result, leading 
to the sad fact that eventually, both will confess to getting ten years each. This 
result is stable because any individual change will lead to a life sentence for this 
individuum. 
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Figure 1. Penalty depending on each prisoner’s strategy. 

 
Because (arguably) the first to prove the existence of a stable equilibrium in a 

certain class of games was the late Nobel laureate John Forbes Nash, such stable 
equilibrium is called Nash equilibrium. Besides being a mathematical toy, game 
theory is widely applied in business and economics. There the strategies (here 
confess or be quiet) are e.g. investment strategies such as investing in country A, 
B, or C. Please note that game theory is a statistical result. Playing a game just once 
will lead to any outcome. Playing it quite often will typically lead to the predicted 
Nash equilibrium. If it is possible (and sensible) to mix strategies, game theory 
will suggest something like investing 20% in A, 50% in B, and 30% in C. 

In order to prove the existence of an equilibrium one needs this “mixing of 
strategies” as we will show in Section 4. Because confess and be quiet cannot be 
mixed, the prisoner’s dilemma has per se no Nash equilibrium. It is a lucky coin-
cidence that it has one. In the game rock, scissors, paper, there is (with pure 
strategies) no Nash equilibrium. However, the strategies can be mixed. In doing 
so there is an equilibrium for 1/3 rock, 1/3 scissors, and 1/3 paper. 

In this publication, we will focus on a particular game which has been inspired 
by [1] or [2]. In penalty shooting in the soccer player and keeper may choose 
between three strategies: right, left, or middle. Taking the probabilities to get 
a goal (or avoid it) under these two times three strategies, one may use game 
theory to calculate the best strategy mix for keeper and player. Taking numbers 
from 434 individual penalties in 44 World Cup and European Championships 
games [2] one will get the following result: For player and keeper, it is (approx-
imately) the best strategy to choose right in 43%, left in 38%, and middle in 19% 
of the cases. It will lead to a success rate (from the player’s point of view) of 80% 
on average. The details can be found in Sections 2 and 3. 

Please note that this game is not limited to constructing soccer strategies. Its 
use there maybe even be pretty limited. But it may be considered a dummy for 
many business situations where two competitors are supposed to choose strate-
gies and/or counter-strategies in order to be successful in the end. 

As we can calculate the best strategy, a Nash equilibrium obviously exists. 
However, it is easy to see that this is not always the case depending on input pa-
rameters like the probability to land a goal if player and keeper choose the same 
corner. As stated above, applying game theory is only sensible if one considers it 
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as a statistical result. A particular pair of keeper and player will not have the 
same success or failure rate under a chosen strategy over time. Even more so, 
changing keeper and/or player will lead to different probabilities of success or 
failure. So we have a distribution of probabilities with an average. In professional 
soccer (or investment) one may rightly assume that this distribution is pretty nar-
row as professionals optimize their behavior in severe training. But even with an 
extremely narrow distribution part of it may be in an area where there is no Nash 
equilibrium though the average lies in a regime showing a Nash equilibrium. As 
we can use statistical results only, we may find a Nash equilibrium in a calcula-
tion though it does not exist in reality. This is scrutinized in Section 3. It is the 
main result of this publication. 

As shown in Section 3, the areas of Nash equilibrium have a sharp border. So 
an extremely small change in input parameters will lead from an existing Nash 
equilibrium not only to no equilibrium but a completely useless result. It is a 
special form of chaos [3], caused by wrong use of averages [4] which cannot be 
avoided here. 

Though this publication focuses on using an example, it is interesting to scru-
tinize why the Nash equilibrium vanishes here. Such theoretical considerations 
are the main point of Section 4. At first glance, our suggested game falls in a 
category where a Nash equilibrium must always exist. Using topology it is almost 
trivial to prove the existence of it by constructing a continuous Nash-function 
and using Brouwer’s fixed point theorem. In Section 4 we show that we need 
“continuous” input factors in order to do so which is not the case here. It is as-
sumed quite implicitly in standard proofs. 

In Section 5 we draw conclusions from the published results and suggest fur-
ther research. 

A rigorous literature review is not reasonable here because our main finding 
(no equilibrium though a calculation yields one) is new. There are games show-
ing sometimes an equilibrium and sometimes not, e.g. [5] [6]. However, the fo-
cus here is not to scrutinize such a partly very difficult problem. It is also not a 
problem of uncertainty. Within an example, we can calculate the Nash equili-
brium by solving Equations (1) to (6). Though results (7) to (10) with the con-
straints (11) and (12) are easily obtained, it is impossible to decide whether they 
make any sense or not as is explained in Section 3.  

2. Suggested Game and Its Stability 

In soccer, there is a penalty shooting where only two people are involved. The 
player stands twelve yards from the goal. The keeper has to stand in front of the 
goal and tries to prevent getting the ball into the goal. There are two possible 
outcomes only: goal (success for player) or no goal (success for keeper). To keep 
it simple, the player may have a choice to shoot to the left, middle, or right. The 
keeper may jump to the left (his right-side), stands straight, or jump to the right 
(his left side). Of course, the model can be extended easily including something  
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Figure 2. Payoff matrix in penalty shooting. 

 
like upper left and lower left, etc. The following Figure 2 summarizes the possi-
ble payoffs. 

llp  is the probability for a goal if keeper and player are both betting on left. 
As another example srp  is the probability for a goal if the keeper stands straight 
and the player is shooting to the right. So the first index in ijp  refers to the 
keeper, the second to the player. The tuple ( ),1ij ijp p−  is the payoff. The first 
position gives the success rate for the player, the second one is the success rate 
for the keeper. So e.g. ( ),1lr lrp p−  refers to a situation where the keeper ex-
pects the player to shoot to the left while the player unfortunately shoots to the 
right. Therefore ( ),1lr lrp p−  is presumedly close to ( )1,0 . However, the play-
er may fail the goal in some cases leading to a success for the keeper. 

The ijp  are the input parameters or payoffs of the game. The realized strate-
gies of the game are the probabilities lx , mx , and rx . The player shoots with 

lx  to the left, with mx  to the middle, or with rx  to the right, respectively, in 
order to have the biggest success (most goals). We can set e.g. 1m l rx x x= − −  
which eliminates one variable. The probabilities ly , 1s l ry y y= − − , and ry  
are the corresponding probabilities for the keeper. The player’s expected payoff 
is as follows if shooting to the left, middle, and right: 

( )shooting left : 1l ll l r sl r rly p y y p y p⋅ ⋅ + ⋅+ − −              (1) 

( )shooting middle : 1l lm l r sm r rmy p y y p y p⋅ ⋅ + ⋅+ − −            (2) 

( )shooting left : 1l ll l r sl r rly p y y p y p⋅ ⋅ + ⋅+ − −              (3) 

Completely analog we will get for the keeper’s payoff: 

( ) ( ) ( ) ( )jumping left : 1 1 1 1l ll l r sl r rlx p x x p x p⋅ ⋅ − + ⋅− + − − −        (4) 

( ) ( ) ( ) ( )standing straight : 1 1 1 1l lm l r sm r rmx p x x p x p− + − − − ⋅+ −⋅ ⋅      (5) 

( ) ( ) ( ) ( )jumping left : 1 1 1 1l lr l r sr r rrx p x x p x p⋅ ⋅ − + ⋅− + − − −        (6) 

The player cannot improve his strategy if expression (1) equals (2) equals (3). 
In the same token, the keeper has biggest success if expression (4) equals (5) 
equals (6). This leads to four linear equations for ly , ry , lx , and rx  which 
are easily solved to: 

( )( ) ( )( )
   

        

rr sm sl rl sr sm rm sl sr
l

ll lm sm sl rr rm sm sr rl rm sm sl lm lr sr sm

p p p
y

∆ ∆ ∆
∆ ∆ ∆

+ +
=

+ + + + +∆ ∆ ∆ ∆ ∆
     (7) 
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( ) ( ) ( )
   

         

lr sm sl lm sl sr ll sm sl
r

sl rr rm sm rl sm lr rl rm sm sl lm rr rl sl sr sr rm rl ll rm rr sr sm

p p p
y

p p p p p p
∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆
+ +

=
+ + + + + + + +∆ ∆ ∆

 (8) 

( )( ) ( )( )
   

        

rr sm sl rl sr sm rm sl sr
l

ll lm sm sl rr rm sm sr rl rm sm sl lm lr sr sm

p p p
x

∆ ∆ ∆
∆ ∆ ∆

+ +
=

+ + + + +∆ ∆ ∆ ∆ ∆
     (9) 

( ) ( ) ( )
   

         

lr sm sl lm sl sr ll sm sl
r

sl rr rm sm rl sm lr rl rm sm sl lm rr rl sl sr sr rm rl ll rm rr sr sm

p p p
y

p p p p p p
∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆
+ +

=
+ + + + + + + +∆ ∆ ∆

 (10) 

The abbreviation   ij nm nm ij ij nmp p∆= = −∆ − . As expected we have l ly x=  
and r ry x= . In addition, the following inequalities must hold: 

0 1 0 1 1l r l ry y y y≤ ≤ ∧ ≤ ≤ ∧ + ≤                (11) 

0 1 0 1 1l r l rx x x x≤ ≤ ∧ ≤ ≤ ∧ + ≤                (12) 

They guaranty both: The solubility of the linear equations (no denominator 
equals zero) and that all probabilities are between zero and one. If these conditions 
are violated, there is no Nash equilibrium. Because of l ly x=  and r ry x= , the 
inequalities (11) and (12) are identical. 

The conditions (11) and (12) for an existence of a Nash equilibrium are pretty 
clumsy because (7) to (10) must be inserted. Though we must assume 0 1ijp≤ ≤ , 
a simplification appears to be not feasible. If one assumes that the player never 
fails the goal, we have 1lm lr sl sr rl rmp p p p p p= = = = = = . This will lead to dras-
tic simplification in the result: 

( )( )
( ) ( )

1 1
3 2 2 2

rr sm
l

rr sm sm ll rr sm

p p
y

p p p p p p
− −

=
− − − − − −

          (13) 

( )( )
( ) ( )

1 1
3 2 2 2

ll sm
r

rr sm sm ll rr sm

p p
y

p p p p p p
− −

=
− − − − − −

          (14) 

( )( )
( ) ( )

1 1
3 2 2 2

rr sm
l

rr sm sm ll rr sm

p p
x

p p p p p p
− −

=
− − − − − −

          (15) 

( )( )
( ) ( )

1 1
3 2 2 2

ll sm
r

rr sm sm ll rr sm

p p
x

p p p p p p
− −

=
− − − − − −

          (16) 

It is straight forward to show that with this simple result the inequalities (11) 
and (12) are always fulfilled if 0 1ijp≤ ≤  is used. With this simplification 
(never missing the goal) the Nash equilibrium will always exist. This will be im-
portant in the discussion of Section 4. 

3. Statistical Analysis of Equilibrium 

As a general discussion of stability is pretty tedious, we are now going to the de-
tailed numbers from penalty shootings in real championship games. Though the 
numbers given in [2] are not complete, one may realistically estimate the ijp  
to 77 86lm rmp p= = , 28 31sl rlp p= = , 93 100lr srp p= = , 4 10smp = , 

66 100llp = , and 58 100rrp = . Please note that the chosen numbers are just 
taken for simplicity. The findings are identical for any chosen numbers. With 
these estimates one easily gets: 
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217101 4737890.43 0.38
505184 1262960l l r ry x y x= = ≈ ∧ = = ≈          (17) 

So we have a Nash equilibrium as the inequalities (11) and (12) are obviously 
fulfilled. Even if varying the ijp  not too drastically, the Nash equilibrium still 
exits. However, the given ijp  are averages. Their distributions are unknown. 
And more importantly, the suggested game is not limited to penalty shootings. 
In particular business situations, one may assume any ijp  with 0 1ijp≤ ≤ . As 
stated the ijp  are averages. Even if these averages show a Nash equilibrium, 
their for sure existing (narrow?) distribution may or may not fall into regimes of 
non-existent Nash equilibria. 

In order not to stay too theoretical, we come back to the penalty shooting. In 
general, the ijp  are building a nine dimensional space with areas of existing 
and non-existing Nash equilibrium. In order to see what we mean, we will leave 
seven of the above given ijp  as given. Two of the ijp  we will vary between 
zero and one. Then we can make three dimensional plots showing areas of 
Nash equilibrium. We will not show all 9 8 2 36× =  possibilities which would 
be pretty repetitive. 

As a first example, we will vary slp  and lmp . In Figure 3 we have plotted 

l r l ry y x x+ = +  over slp  and lmp  under the conditions 0 1l ly x≤ = ≤  and 
0 1r ry x≤ = ≤ . In the orange meshed areas the inequalities (11) and (12) are 
fulfilled and the Nash equilibrium exists. As one sees in less then 50% of the slp
- lmp -space a Nash equilibrium exists. In the grey areas 1l r l ry y x x+ = + > . In 
the other areas without coloring 1l ly x= >  and/or 1r ry x= >  is already the 
case. In real penalty shootings slp  and lmp  will both be not too far below a 
value where a Nash equilibrium exists as Figure 3 shows. 

 

 
Figure 3. Regime of Nash equilibrium varying slp  and lmp . 
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As stated the slp  and lmp  are averages. The values for lmp  may be in the 
area of 0.6 to 0.9. Let’s suppose there are just two pairs of player and keeper. One 
shows 0.46slp ≈  and the other shows 0.6slp ≈  so the average slp  is about 
0.53. From this average one would conclude that there is a Nash equilibrium 
though there is none. The same argumentation is possible for lmp . 

As a second example, we consider a variation of slp  and smp  and the other 

ijp  are as given in the beginning of this section. The result has been displayed 
in Figure 4. The argumentation is the same as in Figure 3. The orange meshed 
area is the area where a Nash equilibrium exits. Here we never have  

1l r l ry y x x+ = + >  except if 1l ly x= >  and/or 1r ry x= >  holds. A Nash 
equilibrium does not exist if smp  is large (likely goal though player and keeper 
shooting and standing in the middle) and slp  is small (no goal though player 
shoots to the right and keeper stands straight). This is not a likely situation in 
penalty shooting but a possible one. Furthermore, our example could also fit for 
investment strategies where we have a priori no typical values for the ijp . 

Again the most interesting discussion follows if one considers the fact that 
the ijp  are averages. Let’s assume 0.5slp ≈  and the average of smp  is about 
0.4. At first glance, one might assume a Nash equilibrium for these values. 
However, the average 0.4 of smp  maybe build of values around 0.6 a and 0.2, 
respectively. As the values around 0.6 show no Nash equilibrium, the average is 
meaningless. 

In both cases (Figure 3 and Figure 4) we see that the border between an 
area of existing and non-existing Nash equilibrium is sharp. So an arbitrary 
small change in ijp  will create a crossover from Nash equilibrium to no Nash 
equilibrium. This is of course also a chaos effect, though not the one considered 
in classic textbooks [3]. Here a topology ([7] to [10]) changes from solution to 

 

 
Figure 4. Regime of Nash equilibrium varying slp  and smp . 
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no-solution. This is closely related to the transition of integer Hausdorff dimen-
sion (no chaos) to non-integer Hausdorff dimension (chaos). For an example of 
Hausdorff dimension and chaos see e.g. [4]. Topological tools are used in order 
to investigate or describe chaos [11]. The Hausdorff dimension is one example 
of it. But it appears to be worthwhile to investigate in a chaotic change of a to-
pology itself. In [12] one finds an example of a chaotic change in warehouse to-
pology. 

The example here can also be understood as a problem of solving a system of 
linear equations (constructed from (1) to (6)) with constrains (11) and (12). 
Proving the existence of a solution is a trivial problem, see e.g. [10]. The solution 
(especially with the constraints (11) and (12)) is straight forward but highly 
non-linear in the input parameters (here ijp ). As shown in [4] in another ex-
ample (differential equations), using averaged inputs does generally not lead to 
an average output. Here the existence of a solution (Nash equilibrium) even 
disappears which can be also the case in the example of differential equations 
[4]. 

4. Theoretical Discussion 

In the last section, we have seen that a game with two participants having a 
choice of three different strategies each does not always show a Nash equili-
brium. This is, at least at first glance surprising. The existence proof of at least 
one equilibrium in a certain class of games was the central part in John Forbes 
Nash’s PhD thesis of 1950. To see the point we will summarize the proof. There 
are many ways to prove it. We here give a sketch of a proof using topology. 

A game is defined by a map 

1 2: n
np S S S× × × →                      (18) 

The iS  are the possible strategies. In our example keeper and player have 
three choices each leading to 3 3 9× =  strategies in total.  
( )1 1 2, , n nS S Sσ σ ∈ × × ×   be a particular strategy bundle. If for any i iSσ ∗ ∈  

( ) ( )1 1 1 1 1 1, , , , , , , , , , , , ,i i i i n i i i i np pσ σ σ σ σ σ σ σ σ σ∗
− + − +≤         (19) 

then ( )1, , nσ σ  is called Nash equilibrium. p is the “profit” of a certain strat-
egy. In our example, p is goal for the player and no-goal for the keeper, so far for 
a definition of Nash equilibrium. The number of strategies is finite. One can 
now “randomize” the strategies. In our example we also did it by using certain 
probabilities for lx , mx , and rx  or ly , sy , and ry  for shooting or jump-
ing into a certain direction. As the strategy is continuous so is the corresponding 
new map [ ]: 0,1i iSρ → . Now the profit is an expectated value. With this, we 
can construct a continuous Nash-function. Applying Brouwer’s fixed point 
theorem (proven in 1910 for any finite dimension) proves that any game which 
can be extended to mixed strategies has a Nash equilibrium. 

So far for the summary of the proof of Nash’s famous theorem. So why does 
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our game defined in Section 2 has (sometimes) no Nash equilibrium? The prob-
lem is that our goal has ends (goalposts). Shooting slightly more or less to the 
left implies a continuous change. However, missing the goal makes the probabil-
ity for a goal discontinuously zero. With this, a continuous Nash-function can-
not be constructed, and Brouwer’s fixed point theorem is not necessarily valid. 
From this, it becomes clear that under the assumption that the player never 
misses the goal (cf. (13) to (16)), a Nash equilibrium always exits. 

Though our game has generally not necessarily a Nash-equilibrium, some-
times it exists. This is no contradiction because Nash’s theorem has no reverse 
validity as e.g. the prisoner’s dilemma game mentioned in the introduction 
shows. The strategies cannot be randomized, because confessing and being quiet 
is not mixable. Nevertheless, the prisoner’s dilemma shows a Nash equilibrium. 
The game rock, scissors, paper is also discontinuous with no randomized strate-
gy between the three pure strategies. So a Nash equilibrium does not necessarily 
exist, and unlike the prisoner’s dilemma there is no equilibrium. Randomizing 
the strategies will lead to the Nash equilibrium mentioned in the introduction. 

The main point of this publication is stated in Section 3. We had a game that, 
depending on the parameters (here ijp ) of the payoff matrix, sometimes shows 
a Nash equilibrium and sometimes does not. The input parameters are generally 
an average of a distribution. If not all of the distribution lies in the subspace 
where a Nash equilibrium exists, the entire calculation does not make any sense. 
This may happen with any game where the pure strategies cannot be rando-
mized completely into a continuous function. 

It is clear that the Nash equilibrium always exists if the player never misses the 
goal. It is intriguing that the Nash equilibrium still exists if missing the goal is 
sufficiently rare. In this particular example, these thresholds can be calculated 
easily. It would be interesting to generalize it. Continuity was the key for apply-
ing Brouwer’s fixed point theorem and with it proving the existence of a Nash 
equilibrium. Discontinuity does not exclude a Nash equilibrium. Is it possible to 
quantify discontinuity in order to say which discontinuity will still lead to a 
Nash equilibrium? It is an interesting question for basic research in topology. 

The question of the previous paragraph is the question for a reversion of 
Brouwer’s fix point theorem which states: If : n nf →   is continuous and 
n∈  finite, then an na∈  exists with ( )f a a= . If f is not continuous, a 
fixed point may or may not exist. For what “forms” of discontinuity does a fixed 
point exist? 

5. Discussion and Conclusions 

The main result of this publication is given in Section 3. As an example, we have 
a game where two participants can choose three different strategies each. The 
main point is that this game sometimes shows a Nash equilibrium. Whether or 
not a Nash equilibrium exists, depends on the probabilities for success (payoff 
values, here called ijp ) of the different strategies. However, in almost all games 
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in reality the payoff values are not fixed given numbers. They are a result of ob-
servation of similar situations in the past. So we have distributions, and the av-
erage payoff values are used. If this average lies in an area where a Nash equili-
brium exists but some values of the distribution are outside a Nash equilibrium, 
then the entire calculation does not make any sense. 

An immediate suggestion for further research is finding such a situation in 
games of the real world. It must be a game where the discrete strategies cannot 
be randomized, cf. Section 4. One example would be auctions where the best 
strategy can be to bid as late as possible. However, going over the deadline will 
discontinuously change the outcome. 

Financial products and their “auctions” at the stock markets are also good 
candidates. Prices of financial products vary chaotically, see e.g. [12] to [15]. 
And more importantly, they are discrete. They are determined at certain points 
in time it  only. However, it would be incorrect to assume a price within an in-
terval of ( )1,i it t + . Mathematically it is always possible to create a continuous 
price but it has no meaning. Prices of e.g. stocks are not conserved quantities 
[13]. So they may take any value in between. Even worse, a price within an in-
terval ( )1,i it t +  does not exist because the price is a result of the bids. 

As displayed in Figure 3 and Figure 4, there is a sharp transition between 
areas where a Nash equilibrium exits and where it does not. Such discontinuous 
transition areas can always be a source of chaos. But this sort of chaos is a sud-
den change from equilibrium to no equilibrium. It is like the chaotic transition 
within the optimal number of warehouses [12]. Though chaos can be scrutinized 
by using topology [11], one should investigate this form of chaotic transition in 
structure. We suggest the word topological chaos. 

As a simple starting point consider a closed line, e.g. rectangular triangle. It 
has a (Hausdorff) dimension of one. Topologically this line is identical to any 
closed line—be it e.g. a quadrat or circle—because there is a continuous trans-
formation between all these lines. Naturally, all these lines have a Hausdorff di-
mension of one. However, this line is topologically also identical to a Koch’s 
curve (see e.g. [3]) which has a Hausdorff dimension of ln 4 ln 3 1.26≈  which 
indicates chaos. Though there is a continuous transformation from regular tri-
angle to Koch’s curve, this transformation is non-analytic at any point. Whether 
this is a general result or just coincidence may be a starting point for further re-
search. 
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