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ABSTRACT 
 

The rise in Industrialization all over the world today has been matched with an equivalent rise in the 
amount of CO2 being released to the atmosphere. The deleterious effect of CO2 ranging from global 
warming, ocean acidification, sea-level rise, and climate change has inspired researchers to seek 
ways of ameliorating this negative effect and has led to extensive research on possible adsorbents 
for carbon dioxide capture. Currently, amine-based CO2 capture processes are widely used in most 
process plants for capturing CO2, however it is prone to so many disadvantages such as high 
energy cost for absorbent regeneration, corrosion, and loss of amine due to degradation and 
evaporation during the on-stream period which generates pollutants. This necessitates the need for 
more research into other possible efficient and less costly adsorption materials. This work takes a 
review on some of these other adsorbents that have being extensively studied such as metal salts, 
metal oxides, hydrotalcites, double salts, carbon, metal-organic frameworks, covalent organic 
frameworks, carbon nanotubes and mesoporous silica. Parameters noted for these materials are 
CO2 adsorption capacity, selectivity, thermal stability, chemical stability, and mechanical stability. 
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1. INTRODUCTION 
 
As more countries industrialize and use more 
energy to power their economies, the demand for 
energy worldwide has gradually risen in recent 
years. The majority of the time, cheap fossil fuels 
like coal, crude oil, and natural gas are used to 
meet this energy demand [1]. However, it has 
been determined that using carbon-intensive 
fuels to produce electricity is a substantial 
atmospheric emitter of greenhouse gases such 
CO2, SOx, H2S, and NOx. Thus, calls for a 
reduction in the world's use of fossil fuels have 
been made repeatedly in the public by civil 
society organizations, international development 
organizations, and environmental non-
governmental organizations. However, the 
depiction of the continual rise in crude oil and 
natural gas consumption throughout the decades 
indicates that this decline in the consumption of 
carbon-intensive fuels has not been attained 
(Fig.1) [2]. This is because alternative energy 
sources have not yet been able to satisfy the 
world's energy needs, which has allowed for a 
rise in the use of carbon-intensive fuels. 
 
The constant burning of fossil fuels has resulted 
in the release of significant volumes of CO2, 
which is known to be the main greenhouse gas 
causing climate change [3, 4]. Unfortunately, this 
upward trend is expected to continue over the 
next few decades as the EIA notes that 
worldwide CO2 emissions from the energy sector 
will continue to rise by 0.6% from 2018 to 2050 
[5]. As a result, this would intensify the global 
warming effect that already makes extreme 
weather events like hurricanes, wildfires, melting 
of the polar ice caps, and biodiversity loss more 
likely. The statistics released by NOAA, which 
showed that in October 2020, the global CO2 
concentration stood at 411.29 ppm [6] as 
opposed to pre-industrial levels of 220 ppm [7], 
supports the notion of rising atmospheric CO2 
concentration. Since environmental degradation 
and extreme weather events are more common, 
it is important to limit the emission of the 
dangerous gas and lower its atmospheric 
concentration. Diverse technical approaches are 
being investigated in this area to lower CO2 
emissions into the atmosphere. They include (i) 
reducing energy consumption through improved 
energy efficiency (ii) using hydrogen and other 
renewable energy sources (iii) enhancing the use 
of natural gas and other less carbon-intensive 
energy sources (iv) enhancing the use of natural 

carbon sinks (forests and soils), and (v) capturing 
CO2 from commercial and industrial systems 
using Carbon Capture and Storage (CCS) 
technologies.  
 
The majority of CCS plants use absorption 
technology to capture CO2 and their operation 
involves the use of solvents such as amines, 
ionic liquids, micro encapsulated solvents, phase 
change solvents, etc. Owing to the fact that 
absorption technology has a high CO2 capture 
effectiveness of over 90% and is a well-
established technique that has been used for 
years in the oil and gas industry to sweeten 
acidic gas, it is widely used for carbon capture. 
However, the energy required to regenerate the 
solvent in the regeneration column for reuse in 
the absorption column means that absorption 
technology has the disadvantage of high energy 
consumption. It is therefore vital to look into 
remedies that address this issue, enable minimal 
energy usage, and guarantee energy efficiency. 
It has been demonstrated that adsorption 
technology uses lower regeneration energies 
than absorption technology does, and this has 
made it a popular research topic [8]. The 
adsorption method for CO2 would be highlighted 
in the next part due to the low energy of 
regeneration and other qualities like high surface 
area, porosity, and stability, etc. In addition, 
various industrial processes that show promising 
applicability for these adsorbents would be 
highlighted in accordance with a detailed 
discussion of the various state-of-the-art 
adsorbents used for carbon capture. This is 
particularly due to the fact that such thorough 
review work on carbon capture by adsorption is 
still hard to find in the literature. 
 

1.1 Carbon Capture by Adsorption (CCA) 
 

Adsorption is a surface phenomenon and 
interaction caused by mass transfer that takes 
place between an adsorbate and an adsorbent 
[9]; it is fuelled by the varied properties of the 
adsorbate and adsorbent and can thus alter 
desorption between the various constituents, 
highlighting its reversibility [10]. Adsorption, 
which is defined as the adhesion of atoms, ions, 
or molecules from a liquid, gas, or solid to the 
surface of a solid, takes place when a film forms 
between the adhered atoms, ions, or molecules 
and the adsorbent's surface. This film prevents 
the superficial atoms of the adsorbent from being 
encapsulated by the adsorbent atoms that are 
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still present. Adsorbates can therefore cling to 
gaps created by this; however, this is not the 
case when the bulk volume of the material is 
being absorbed. Due to the imbalanced forces 
present at the surface where adsorption occurs, 
surface energy is typically produced between the 
constituents as the adsorbate's atoms satisfies 
the adsorbent's need for bonding. This type of 
bonding is usually influenced by the type of 
constituents involved in the interaction and it 
occurs in two forms – physical bonding 
(physisorption) and chemical bonding 
(chemisorption, a process that can be irreversible 
and reversible). Physisorption is driven by weak 
intermolecular forces (van der Waals forces, 
<40KJ/mol) while chemisorption occurs by 
covalent bonding and electrostatic attraction ˃40 
KJ/mol [11]. Physisorption usually occurs at low 
temperature, low heat of adsorption and fast 
adsorption; also, the energy of adsorption is 
usually small hence the adsorbate and adsorbent 
are easily separated without using high energy 

for regeneration [12]. Chemisorption, on the 
other hand, is driven by processes such as 
surface complexation, precipitation, and ionic 
exchange and entails greater heats of   
adsorption and activation energies. Despite the 
fact that physisorption and chemisorption 
typically take place simultaneously [13], these 
two processes differ from one another (Table 1) 
[12]. 
 
Carbon capture by adsorption has been 
extensively explored in order to aid its 
industrialisation and commercialization due to the 
capacity of adsorption to permit low energy 
induced carbon capture processes. The ensuing 
part will cover several chemisorbent and 
physisorbent types for CO2 capture, as it is well 
documented that adsorption (chemisorption and 
physisorption) is applicable and suitable for CO2 
collection at post combustion settings. 
Additionally, new developments with novel 
sorbents will be emphasized.  

 

 
 

Fig. 1. Global Carbon intensive fuel consumption 
 

Table 1. Differences between Physisorption and Chemisorption 
 

 Physisorption Chemisorption 

1 The force of  adsorption is the Van der 
Waal’s forces 

The force of adsorption is the chemical bonding 
force (covalent bonding and electrostatic attraction) 

2 Has a non-selectivity process of 
adsorption  

There is a selective process of adsorption 

3 Has a single/multiple layered 
adsorption 

Characterized by  single layered adsorption 

4 Posses low heat of adsorption Characterized by a high heat of adsorption 

5 The rate of adsorption is Fast The rate of adsorption is slow 

6 The process is unstable The process is stable 
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2. ADSORBENTS FOR CARBON 
CAPTURE AND STORAGE 

 
This section would describe several 
chemisorbent and physisorbent types utilized for 
post combustion CCA. The chemistry, 
thermodynamics, and appropriateness of these 
sorbents for CO2 adsorption will be the main 
topics of discussion. More crucially, technological 
advancements in designing these materials for 
better CO2 capture would also be addressed. 
 

2.1 Chemisorbents 
 
2.1.1 Amine-based adsorbents 
 
Amine-based adsorbents, also known as amino-
solids, are porous structures created from amino-
compounds and solid sorbents in order to 
maximize the characteristics of the pristine 
components for increased CO2 adsorption 
capacity and selectivity, decreased energy use 
and equipment corrosion, and chemical stability 
in the presence of contaminants like SOx and 
NOx [14]. Diverse amine-based adsorbents exist 
as a result of the various types of amino-
compounds and solid sorbents that are available; 
some of them include amine modified 
mesoporous silica, zeolites, activated carbon, 
metal-organic frameworks (MOF), and carbon-
based solids. The higher CO2 adsorption 
capacity of amine-based adsorbents in the 
presence of moisture [15] —a vital component 
constantly present in flue gas streams from 
industrial and process systems—increases their 
viability for process application. This increased 
CO2 adsorption capacity is caused by the 
creation of bicarbonate, which is indicated in Eq. 
(1), by the allocation of hydroxide (OH

-
) to CO2 

from water, skipping the reaction step shown in 
Eq. (2) that entails the elimination of hydrogen 
(H

+
) obtained in CO2

 
capture reactions 

happening in non-humid circumstances, which 
results in the formation of carbamate. This 
process raises theoretical efficiency (molCO2/mol 
amine) to within the range of 0.5 – 1 as             
against dry CO2 capture that is limited to 0.5 or 
below [16]. It is important to note that the            
kinetic inefficiency of bicarbonate production            
is the reason why its efficiency is not close to 
one. 
 
RNH2 + CO2 + H2O ↔ RHH3

+
HCO3

–
 

(bicarbonate) ↔ RNH3
+
CO3

2–
 (carbonate) (1) 

 

2(RNH2) + CO2 ↔ RHCO2
–
RNH3

+
 

(carbamate)           (2) 
 
Based on their technique of manufacture and the 
type of bond produced between amino-functional 
groups and sorbent materials, these various 
amine-based adsorbents are divided into three 
classes (Class 1, 2 and 3 amino-solids) [17]. 
 
While selectivity is typically assessed using the 
well-known Ideal Adsorbed Solution Theory 
(IAST) or Henry's Law, the adsorption capacity of 
adsorbents, including amine-based adsorbents, 
is typically determined via equilibrium/dynamic 
adsorption study (using adsorption isotherms) 
and heat of adsorption (using Clausius 
Clapeyron Equation) (also referred to as single 
component isotherms). Adsorbents' suitability for 
industrial use is heavily influenced by these two 
factors (adsorption capacity and selectivity) [18]. 
As a result, amine-based adsorbents must have 
improved adsorption capacity, heat of adsorption, 
and selectivity at lower CO2 concentrations that 
can be found in flue gas streams. The ease with 
which CO2 molecules pass through layers of 
amines in the framework to access amine 
moieties connected to the adsorbent is what 
determines the adsorption capacity of amine-
based adsorbents [19]. In this regard, a rise in 
temperature would lower diffusional barriers and 
boost the sorbent's overall capacity for 
adsorption; however, once CO2 molecules bind 
to the adsorbent, kinetics become less important. 
By this time, the adsorption capacity is 
thermodynamically controlled [19], which causes 
the uptake of CO2 to decrease as temperature 
rises. Temperatures between 70 and 75 

o
C have 

been found to be the ideal for amine-based 
adsorbents to achieve their highest adsorption 
capacities. Above this range, thermodynamic 
equilibrium would facilitate desorption, which 
would lower adsorption capacity [20]. The curve 
below reveals a distinctive form that is impacted 
by both chemical and physical adsorption, 
according to analysis of adsorption isotherms of 
amine-based adsorbents explored by numerous 
researchers. The type of adsorbent used for 
amino-functional group support affects the 
sorbent's adsorption capacity at regions of higher 
partial pressure, and also illustrates the 
diminishing influence of chemisorption at higher 
partial pressures just as physisorption does at 
regions of low loadings. This is demonstrated in 
Fig. 2 [14].  
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Fig. 1. Adsorption isotherms of TEPA-MIL-101(Cr), an amine-based adsorbent shows curve 
that is influenced by chemical and adsorption; initial high CO2 uptake at low loading and 

increased uptake at higher pressures 
 
All classes of these sorbents must be inert and 
stable in the presence of various reactants in 
process systems since the cyclic stability of 
amine-based adsorbents is essential to their 
industrial and commercial use (especially in 
presence of other gases found in practical flue 
gas mixtures). But this is not the case with Class 
1 amine-based adsorbents; this group of 
sorbents has been found to produce urea 
because, under certain post-combustion 
conditions, covalent bonding is absent (typical 
industrial temperatures above 135

o
C). 

Additionally, it has been claimed that this urea 
production can take place in dry conditions at 
temperatures as low as 65

o
C even when                

there is little CO2 present in the gas combination 
[21]. Due to the loss of strong covalent                   
bonds needed for an enhanced reaction when 
using amines of low molecular weight, Class 1 
amine-based adsorbents experience loss of 
amino-functional groups from the support 
(leaching) [22]. As a result, high molecular weight 
amines become desirable for Class 1 amine-

based adsorbents, but use of these amines               
has the drawback of slow diffusion [23]. 
Aminosilanes and short-chained amines are 
preferable for Class 2 and 3 amine-based 
adsorbents because they produce powerful 
covalent bonds that make them more process-
efficient than Class 1 amine-based adsorbents. 
As a result, it has been shown that these                 
kinds of amine-based adsorbents exhibit               
stability after numerous sorption cycles. In this 
regard, MOF MIL-101(Cr) wet-impregnated with 
TEPA demonstrated stability and continued to 
possess its original CO2 adsorption capability 
[14]. 
 
Selected amine-based sorbents previously used 
are highlighted in Table 2 with a focus on 
parameters such as adsorption capacity, 
selectivity, heat of adsorption (critical parameter 
that determines regeneration energy and cost of 
operation), and stability due to their promising 
potential for CO2 capture at post combustion 
conditions. 
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Table 2. Properties of selected amine-based adsorbents for CO2 capture 
 

Amine-based 
adsorbent 

CO2 uptake Stability Adsorbent 
support 

Heat of ads. 
(KJ/mol) 

Ref. 

Ads. Cap. 
(mmol/g) 

T (K) P (bar)  

MMSV(a)-PEI-60% 4.73 363 - After ten sorption cycles, good 
stability 

 - [24] 

PEI-423/MPS 4.5 348 - Retained adsorption capability after 5 
sorption cycles. 

 64.3 [23] 

SBA-15-NH2 0.95 298 - - Silica 34.3 [25] 
Zn2(dobpdc)(i-2)(i-
2−CO2)) 

4.8 298 1 - MOF 83 [26] 

PD-TEPA Monolith 2.23 298 1 After 5 cycles, there was minimal 
loss of initial adsorption capacity. 

Silica - [27] 

AEEA-55/SiO(OH)2 4.54 298 0.1 Following 12 adsorption cycles, a 
12% reduction in the initial adsorption 
capacity was observed. 

Nanoporous 
silicic acid 
(SiO(OH)2) 

29.9 [28] 

MPS-LA-120 3.86 323 1 After 120 sorption cycles, the amount 
of pristine adsorption capacity lost 
was negligible. 

Silica 68 [29] 

SynA50 1.75 298  Three sorption cycles were the 
maximum for stability in humidity. 

Silica - [30] 

PD-MAPS_2 0.54 318 - After five sorption cycles, there was 
minimal loss of adsorption capacity. 

Silica  [31] 

0.29EH/PEI-PAM-65 2.93 323  After 50 sorption cycles, adsorption 
capacity dropped from 2.93 mmol/g 
to 2.66 mmol/g 

Polyacrylamide 
(PAM) composite 
beads 

56.8 [32] 

PEHA-PO-1-2/50S 2.4 358  Epoxide was added to the sorbent, 
increasing its resistance to oxidation. 

Silica 72 [33] 

MP-50 2.75 358  After 10 sorption cycles, the 
adsorption capacity decreased from 
2.75 mmol/g to 2.66 mmol/g. 

Mesoporous silica 
nanotubes 

- [34] 
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2.1.2 Metal Oxides 
 
The integration of CO2 collection into Integrated 
Gasification Combined Cycle (IGCC) Plants is 
being impeded, according to [35], by the 
unavailability of a cost-effective adsorbent. Other 
adsorbent substances including zeolites, 
hydrotalcites, metal-organic frameworks, etc. are 
the subject of extensive research. Due to its high 
CO2 sorption capacity (17.8 mmol/g) and 
availability in the form of limestone, calcium 
oxide is emerging as a promising sorbent in the 
metal oxide class. Because it can adsorb CO2 at 
high temperatures, calcium oxide can reduce 
costs by avoiding the need to cool the gas during 
CO2 capture [35]. The reaction between the 
metal oxides and CO2 results in the formation of 
thermodynamically stable carbonates, such as 
calcium oxide (CaO) and magnesium oxide 
(MgO). The metal carbonates renew the                
oxides when heated and release a stream of      
CO2 gas. A cyclic process is created by the 
interaction of exothermic carbonation and 
endothermic regeneration reaction. In the               
end, the produced pure CO2 gas can either be 
buried or utilised to improve oil recovery                   
[36]. 
 
Magnesium oxide is an attractive candidate for 
pre-combustion CO2 capture due to its 
favourable temperature window ( 200-500 

o
C) 

[37].Due to their abundance in nature, low cost of 
manufacture, and decreased toxicity, metal 
oxides are regarded as attractive chemisorbents 
for CO2 collection. They work well for CO2 
collection when combined with the basic sites of 
a few chosen metal oxides that have lower 

charge or radius ratios, increasing their ionic 
nature and site basicity [38]. Additionally, 
research into the use of metal oxides for CO2 
capture has been popular due to their 
adaptability in a broad range of temperatures, 
from ambient to roughly 700

o
C .[39]. The process 

efficiency of metal oxides in capturing CO2 is 
constrained in process applications due to the 
impact of sintering [38] which lowers sorbent 
performance, particularly at high temperatures 
when metal oxides are recycled frequently for 
best performance. This reduction is made 
possible by a reduction in pore size, a 
corresponding alteration in pore shape, and even 
the closing of microscopic pores during the 
heating process of recycling. Additionally, it has 
been shown that the structure of metal oxides 
has a bimodal pore size distribution as a result of 
sintering; in this instance, bigger pores are seen 
[40]. Once more, this is made possible by the 
recycling process's reduction in surface energy, 
which causes microscopic pores to enlarge in 
size. 
 
2.1.3 Selection criteria for metal oxides 
 
The selection criteria for metal oxide is usually 
based on the pre and post combustion 
technologies and conditions in the power plants. 
This includes only those solid materials that 
maybe suited as CO2 sorbent candidate and 
further considered for experimental validation, 
provided they meet the criteria of lowering the 
energy cost for both the capture and 
regeneration process and can be operated at 
desired conditions of CO2 pressure and 
temperature.

 

 
 

Fig. 3. cyclic CO2 capture process for metal oxides (MgO) and  metal carbonates (MCO3) 
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Fig. 4. Thermodynamic properties and CO2 wt% absorbed by different metal oxides at 300K 
 
The thermodynamic characteristics and CO2 
weight percentage absorbed by various metal 
oxides are shown in the Fig 4 [36]. The figure 
shows that BeO has favourable thermodynamics, 
however due to the risks associated with 
beryllium dust or powder, this system is not a 
good option for CO2 collection. It is significant to 
remember that a strong exothermic forward 
reaction between the metal oxide and CO2 
necessitates a high temperature for oxide 
regeneration. To handle the high volume of flue 
gas stream at any fossil fuel burning plant, a low 
CO2 wt% (about 40–50) will call for a significant 
number of the solid materials. So, a significant 
energy or carbon emission penalty can be 
mitigated by a high regeneration temperature 
and low CO2 weight percentage. Furthermore, 
these oxides may not be appropriate for CO2 
capture in any plant because they eventually 
have a substantial impact on power costs. The 
optimal sorbents should function to separate CO2 
from H2 within the pressure and temperature 
ranges mentioned above in order to minimize 
energy usage. 
 
Due to the restrictions listed above, only a small 
number of oxides were selected for experimental 
validation since they appear promising. 
Considering their accessibility and advantageous 
thermodynamics, the two alkaline-earth metal 
oxides CaO and MgO receive an abundance of 
attention [36]. The oxides of magnesium, 
aluminium, chromium, copper, tantalum, 
tantalum, iron, barium, cesium, rubidium, 
potassium, sodium, and lithium are some other 

metal oxides that have drawn attention but are 
not covered in this study. 
 
2.1.4 Magnesium Oxide (MgO) based 

adsorbent 
 
Magnesium carbonate (MgCO3) results through 
the reaction between MgO and CO2. At room 
temperature, MgCO3 is in a stable 
thermodynamic state. Kumar and Saxena [36] in 
their work showed that 0.92 tons of MgO is 
required to capture 1 ton of CO2 and as a result, 
every power plant site will need a significant 
quantity of MgO in order to remove CO2. MgO is 
a good option for pre- and post-combustion 
capture systems due to its low regeneration 
temperatures, T2 = 287 °C (post-combustion) 
and T1 = 447 °C (pre-combustion) [41]. Other 
advantages include the availability of cheap 
precursors, the ease of regeneration using 
temperature swing adsorption, and a moderate 
selectivity in the presence of steam. Pure 
magnesium oxide is found in abundance in 
nature, but it has considerable disadvantages, 
such as a limited adsorption capacity, a sluggish 
reaction rate, and poor thermo-mechanical 
stability [42]. Despite the fact that these 
disadvantages have reduced the effectiveness of 
magnesium oxide as an adsorbent, several 
investigations have been carried out to find 
solutions. 
 
“With regards to adsorption mechanism, the 
adsorption of CO2 on MgO is a surface 
phenomenon which involves acid-base type of 
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reaction. The acidic CO2 molecules react with the 
basic O

2- 
 sites to form different types of 

complexes” [37]. Carbonates (monodentate, 
bidentate, and bridging), carbonate ions, and 
bicarbonates are among the complexes that can 
form depending on the circumstances and 
environment of capture. Monodentate carbonates 
typically develop at low temperatures due to 
quick physical adsorption. Because chemical 
adsorption occurs rather slowly at higher 
temperatures, the bidentate carbonates are 
primarily found there [43]. Surface geometry at 
the atomic level has a significant impact on the 
strength of basic sites. Low coordination 
numbers are found in the oxygen atoms near the 
crystallographic corners and edges of MgO. 
These atoms are less complex than those found 
in basal planes. Thus, at these low coordinated 
spots, CO2 will be absorbed more effectively [42]. 
 
The initial stage of adsorption causes a 
carbonate layer to build on the surface, which 
prevents additional CO2 molecules from being 
absorbed making pure magnesium oxide to 
perform poorly. Another factor is the pure 
magnesium oxide's small surface area. 
Therefore, recent research has been focused on 
creating magnesium oxide-based adsorbents 
with improved performance, employing various 
methods. One of these methods is the synthesis 
of mesoporous magnesium oxide. Another is the 
use of a support matrix to help magnesium oxide 
nanoparticles disperse more effectively. A third 
method is the synthesis of modified magnesium 
oxide from molten salts. A fourth method is the 
use of mixed metal oxides. These performance 
enhancement strategies were covered in the 
work of Bhatta et al. [37]. MgO/Al2O3 sorbent for 
CO2 capture at low temperatures was examined 
in a fixed bed by Li et al. [44] and the sorbent 
was shown to have a maximum CO2 capture 
capacity at a MgO loading of 10 wt%, which 
came about as a result of the equilibrium 
between the sorbent's physical adsorption and 
chemical absorption. The CO2 collection capacity 
with the water vapour initially rose and then 
decreased. With water vapour concentrations of 
0 and 13 vol%, the total CO2 capture capabilities 
were generally as high as 0.97 and 1.36 mmol/g 
at 60 °C respectively. Water vapor's contribution 
in raising MgO activity is well studied and known 
now.  
 
2.1.5 Calcium Oxide (CaO) based adsorbent 
 
According to Eqs. (3) and (4), the reaction of 
CaO with CO2 is reversible. CO2 is adsorbed by 

CaO in an exothermic carbonation reaction 
between 500 and 800 

o
C.  The converse 

endothermic desorption of CO2 occurs between 
800 and 950 

o
C. Decarbonation or calcination is 

the term for this [37]. 
 

CaO(S)     + CO2(g)  ⟷  CaCO3(s)    ∆H = -
175kJmol

-1
                  (3) 

 

CaCO3(S)   ⟷  CaO(s) +  CO2(g)   ∆H  = 
+179.2kJmol

-1  
         (4) 

 
Because they can directly collect CO2 from high-
temperature flue gas and are affordable as well 
as having outstanding adsorption capability, 
calcium-based adsorbents have garnered a lot of 
interest. A severe decline in adsorption 
performance will result from the calcium-based 
adsorbents' propensity to sinter after repeated 
adsorption-desorption cycles [45]. The reversible 
reaction between CaO and CO2 forms the basis 
of the concept called calcium looping. Several 
other terminologies are also used in the literature 
for this concept, including carbonate looping, 
regenerative calcium cycle and Ca-looping. 
Almost all kinds of CO2 removal routes could 
benefit from the use of calcium looping. Calcium 
looping has several benefits, including the 
following: (i) reduced efficiency penalty in power 
plants, (ii) simple application in industry-scale 
circulating fluidized beds, which is an energy-
efficient mature technology, (iii) it can be 
economically integrated with other carbon-
intensive industries (for instance, cement), (iv) it 
uses extremely cost-effective, low-risk adsorbent 
(limestone or dolomite) and (v) it is 
environmentally friendly and readily available. In 
light of this, the calcium looping concept is 
applicable to a wide range of carbon dioxide 
collection strategies with varied degrees of 
technological maturity. The calcium looping 
(CaL) cycle (Fig. 5); [46], is a promising CCS 
method based on the alternating uptake (in a 
carbonator) and release (in a calciner) of CO2 
from calcium-based sorbent, most commonly 
limestone because of its affordability and 
abundance. The CO2 in the flue gas generated 
from a combustion plant is captured by CaO in 
the carbonator at around 650–700 °C following 
an exothermic reaction (Fig. 5) [46]. As a result, 
the carbonator generates a stream of used 
sorbent, which is a combination of CaCO3 and 
CaO, as well as a CO2-depleted flue gas. 
Eventually, the used sorbent is fed into the 
calciner, where endothermic regeneration is 
conducted at temperatures between 850 and 950 
°C. This method regenerates the CaO-based 
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sorbent and produces a CO2-rich flue gas that is 
ready for further processing and storage. In order 
to prevent dilution of the CO2-rich stream created 
in the calciner, the heat needed to maintain the 
endothermicity of the calcination process is often 
provided by burning auxiliary fuel in the calciner 
in an oxy-firing mode. In order to provide the 
calciner with oxygen, this alternative involves 
coupling the CaL plant with an Air Separation 
Unit (ASU). If a solid auxiliary fuel, like coal, is 
utilized, there is an additional problem because 
the regenerated sorbent must first be separated 
from ash residues before being recycled to the 
carbonator. The most common reactor 
configuration for calcium looping is a Dual 
Interconnected Fluidized Bed (DIFB) reactor 
setup, which makes it simple to transport solids 
between reactors and provides an ideal 
environment for the development of 
heterogeneous gas-solid interactions [46]. 
 
The stoichiometric adsorption capacity is very 
high, equating to 78.6 wt% CO2. However, due to 
a number of parameters, such as the nature of 
the precursors, adsorbent particle size, and 
shape, the real capacity is rather low. Although 
natural adsorbents like dolomite and limestone 
are fairly inexpensive, they have a serious 
attrition problem. The attrition resistance of 
synthetic calcium oxide-based adsorbents is 
substantially higher, although they are not as 
cost-effective as natural ones. Additionally, the 
cumulative sulphonation process in the presence 
of SO2 reduces adsorption capability [47]. 
 
2.1.6 Lithium-based sorbents 
 
Lithium based sorbents has been considered for 
use in CO2 capture due to their ionic mobility and 
affinity for CO2 [48]. These compounds are quite 
promising and have been thoroughly investigated 
for their CO2 adsorption properties. Notably 
among them are LiFeO2, Li2CuO2, Li2ZrO3, 
Li8SiO6 and Li4SiO4 [49].  Among these materials, 
Lithium Orthosilicates (Li4SiO4) has serious 
potential given its higher CO2 sorption capacity, 
cyclic stability than LiFeO2, Li2CuO2, and Li8SiO6, 
and lower cost than that of Li2ZrO3 [50]. 
“Additionally, the regeneration temperature of 
Li4SiO4 material is much lower when compared 
with the calcium-based CO2 sorbents, indicating 
that lower energy consumption is required for its 
regeneration” [50]. Research also shows that the 
addition of dopants such as Al, Fe, Na, K and Cs 
increases the CO2 Uptake of lithium orthosilicate. 
In an experiment carried out by Walther-Dario et 
al. [51] using steel metallurgical slags as silica 

source with and without addition of 10-30wt% 
K2CO3, he observed that the CO2 Capture 
efficiency improved with the addition of K2CO3 

because of the formation of a eutectic phase 
between K2CO3 and Li2CO3,  which facilitated 
CO2 diffusion  into the material bulk. The best 
capture capacity value (104mg CO2/g material) 
was obtained using the material produced from 
steel metallurgical slag with 20wt% K2CO3. Also, 
Olivares-Marin et al. [52] reported that K-doped 
Li4SiO4 obtained using fly ash as source of SiO2 
exhibited a capacity of 101 mg g

-1
 under 

optimum conditions (at 600 
o
C with 40 mol% 

K2CO3). Further studies is focused on decreasing 
the precursor particle size or choosing more 
sintering-resistant precursors to result in a 
smaller product grain size. Such is evident by the 
recent research done by Rajesh Belgamwar et 
al. [53] who synthesized lithium silicate 
nanosheets which showed a high CO2 capture 
capacity (35.3wt% CO2   capture using 60% CO2 
feed gas close to the theoretical value) with ultra-
fast kinetics and enhanced stability at 650

0
C. He 

opined that the nanosheet morphology of the 
Lithium silicon nanosheets allowed for efficient 
CO2 diffusion to ensure reaction with the entire 
sheet as well as providing extremely fast CO2 
capture kinetics (0.22 g g

-1
 min 

-1
). It was also 

reported that the LSNs were stable for at least 
200 cycles without any loss in their capture 
capacity or kinetics and neither formed a 
carbonate shell unlike conventional lithium 
silicates which are known to rapidly lose their 
capture capacity and kinetics within the first few 
cycles due to thick carbonate shell formation and 
also due to the sintering of sorbent particles. 
 
2.1.7 Sodium based sorbents 
 
The CO2 capture properties of certain sodium-
based compounds was first reported by Lo pez-
Ortiz et al. [54] who stated that Na2ZrO3, 
Na2SbO3, and Na2TiO3 could absorb CO2 in the 
temperature range of 600-700 

o
C. and that 

reactivity followed the order Na2ZrO3 > Na2SbO3 
> Na2TiO3. Sodium Meta Zirconate (Na2ZrO3) 
exhibited better adsorption rate and inferior 
regeneration performance compared to Li4SiO4 
and Li2ZrO3. With a CO2 adsorption capacity of 
23.75wt% and a lower cost compared to other 
sodium-based sorbents, Na2ZrO3 has gained 
attention as a good CO2 adsorbent. They can 
operate at higher temperature plus a higher 
reaction rate has also been observed compared 
to lithium-based adsorbents [54]. Though 
Na2ZrO3  is able to adsorb CO2 even at room 
temperature, the best temperature for CO2 
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adsorption on Na2ZrO3  is said to be 600
0
C [54]. 

The adsorption reactions is as shown in Eq. (5).  
 
Na2ZrO3(s) + CO2 (g) ↔ Na2CO3(s) + ZrO2(s)         (5) 
 
2.1.8 Hydrotalcites 
 
Hydrotalcites, broadly classified as layered 
double hydroxides (LDHs), have some distinct 
characteristics preferred in CO2 capture 
technology; the speed with which it attains 
chemical equilibrium as well as a high 
regenerative limit contrast with normal calcium 
oxides [55]. According to temperature tolerance 
range levels, LDHs are classified as 
intermediate-temperature adsorbents, with 

sorption/desorption temperatures reaching           
200-400°C [56]. It is generally denoted                       

as      
     

           
  

         

 
        

 

 , 

where:             are divalent 

                              and trivalent 

cations                          , respectively, 

and     is an anion of valency n which occupies 
the interlayer region, and maintains electrical 
neutrality of these materials. The anions range 

can be further explained as               
   

    
       ,  y= 1-(3x/2) and x is the M3+/(M2+ + 

M3+), with a ratio of (0,14  x  0,33) [9,10,11]. 
Fig. 6  shows an adapted schematic form of 
LDHs.  

 

 
 

Fig. 5. The calcium looping process source 
 

 
 

Fig. 6. Structural illustration of LDHs;                                       
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Table 3. Comparison of the CO2 absorption capacities of various layered double hydroxides 
(LDHs), hydrotalcite-like compounds (HTlc) or anionic clays [55] 

 

Materials  Gas Mixture Adsorption 
conditions 

Adsorption 
Capacity 

Authors 

K-HTlc & Mg-Al CO2/N2, N2 and 
H2O 

673-733 K/ 
0.0 - 0.7 bar 

0.0 to 0.6 mol.Kg
-1

 [58] 

K-HTlc & Calcined H2S and CO2 400
o
C and 5 bar In multiple cycle 

experiments 
[59] 

HTlc – NiMgAl & 
 NiMgAlFe 

Flow of CO2 20
o
C at 1 atm 1.58 mmol/g [60] 

HTlc & Mg-Al Flow of CO2 200
o
C at 1 atm 0.58-0.83 mmol/g [57] 

K-HTlc, Mg/Al & 
K-HTlc – 400 C/6 

Ar/He/CO2 and 
H2 

0.4 MPa 51.4 mg/g 
adsorbents 

[61] 

20 wt.% K-HTlc & 
Mg/Al= 0.6 

CO2, H2O T= 400-450
o
C  

0.0 to 30 bar 
0.0 to 1.6 mol.Kg

-1
 [62] 

25 wt.% K-HTlc & 
MgAl - 400

o
C / 6 h 

H2, Argon and 
CO2 

400 and 300
o
C / 1.2 

MPa 
1.01 and 0.6 
mmol/g 

[63] 

HTlc & Mg-Al N2 / CO2 300-400
o
C /10 bar 0.52-1.21 mmol/g [64] 

SBA-15-HTc &  
Mg/Al=2 

He / CO2 343 K and 1 atm 0.6-2.5 mmol/g [65] 

 
Overall, the reduction of the ratio between the 
metals in LDHs disfavour the exchange kinetic 
process since it stabilizes the layers and 
diminishes the efficiency of ionic exchange, 
modifying the sorption capacity of these 
compounds. In the past decades, several studies 
have been done on the adsorption behaviour of 
CO2 using layered double hydroxides, 
hydrotalcite-like compounds, or anionic clays. 
Some factors influence the sorption capacity of 
these materials, including type of M

2+
, M

2+
/ M

3+
 

(Aℓ 
3+

) ratio, the anions present in the interlayer, 
the water content, the temperature, the cycle 
number and chemical. On a holistic view, a good 
performance for an efficient CO2 sorption 
requires some important characteristics besides 
its high sorption capacity, other qualities such as 
a high stability and a fast sorption/desorption 
kinetics are equally important. Tang’s group [57] 
concluded that “besides their characteristics, 
LDHs present in sorption materials are also very 
interesting including their speed to achieve 
equilibrium and their superior regeneration in 
relation to calcium oxides. Previous scholarly 
works have synthesized specific LDHs together 
with thermally modified for CO2 sorption.  Some 
examples of LDHs used for CO2 capture, as well 
as their unique sorption capacities have been 
mentioned (Table 3)”. 
 

2.1.9 Double Salts 
 

Double salts are formed by the chemical 
combination of aqueous solutions of the 
carbonates and bicarbonates of sodium and 
potassium followed by crystallization. These salts 

can either be in molten states or other various 
forms. A pioneer study carried out at the 
Norwegian University of Life Sciences (NMBU) 
facilitated a breakthrough in Carbon Capture by 
Salt Technology using what they termed Carbon 
Capture Molten Salts (CCMS) [1]. The 
technology operates upon the fundamental 
principles of Calcium-Looping (CaL) with key 
modification in CCMS which utilizes the CO2 as 
its sorption particles and are completely or 
partially dissolved in molten salt, whereas in CaL, 
the sorption particles are in a solid phase. The 
melt consists of inorganic salt and alkali earth 
metal oxide. When testing this technology, 
promising results were revealed. Using CaO as 
sorbent dissolved in a few select mixtures of salt 
yielded a high CO2 capturing rate from a gas 
mixture with 14 vol% CO2. Unlike technologies 
using similar capture techniques, the sorbent in 
CCMS does not deteriorate after a few cycles of 
CO2 capture. Today the CCMS technology has 
mostly been tested with CaO as CO2- sorbent. 
CaO has shown promising results during CO2 
capture in CCMS; however, CaO needs large 
amounts of energy to be regenerated, 885 °C, 
after capturing CO2. This is due to the high 
reaction enthalpy of the decarbonation reaction. 
The high energy requirements are the main cost 
driver of CCMS with CaO [66].  
 

2.2 Physisorbents 
 

2.2.1 Carbon-based materials 
 

Carbon belongs to group 14 of the periodic table, 
and it is one of the most abundant resources on 
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earth. It is present in rocks (limestone, dolomite, 
marble, etc), fossil fuels (coal, petroleum and 
natural gas), food components and most 
importantly in the air with oxygen [67]. “The 
existence of carbon in different forms can be 
attributed to its unique electronic structure which 
allows the formation of stable chemical bonds in 
various configurations. Carbon unique chemical 
characteristics means it can form single, double 
or triple bonds; it can catenate (bond with one 
another), forming cyclic or acyclic chains as well 
as straight or branched chains; with non-metallic 
elements it is capable of forming strong bonds” 
[67]. Allotropy is the existence of elements in 
different forms but same physical state. Carbon 
has three allotropes: amorphous carbon, 
crystalline graphite and diamond. They possess 
diverse properties and therefore each deserves 
to be considered as an allotrope. The specific of 
the three allotropes are not discussed in this 
study, as they are not specific on the details of 
carbon capture. Furthermore, since carbon 
materials constituents are reactive with a                
wider range of elements it is safe to assume that 
a controlled chemical analysis can make              
carbon materials preferred in the making of 
materials for carbon capture in the CCUS value 
chain. Production of innovative CO2 capture 
materials based of carbon or similar                 
elements are essential in the general low carbon 
emission and energy goals for production 
industries while phasing into renewable-              
based energy options. Very large amounts of 
CO2 must be captured to be then used or                 
stored. Thus, efficient carbon capture              
materials are instrumental to CO2 utilisation and 
storage.  
 
“Direct air capture (DAC) is another formidable 
challenge of capturing CO2 directly from the 
earth’s atmosphere. The Glaser group at the 
University of Missouri-Columbia has specialised 
in the study and development of rubisco-inspired 
biomimetic approaches to the reversible capture 
of CO2 air. In their contribution the group shows 
how the reversibility of CO2 binding in a rubisco-
based small molecule model is essentially 
dependent on a drop-in entropy upon capture” 
[66]. Two examples of carbon-based materials 
utilized in adsorption technology are biochar and 
carbon black. 
 
2.2.2 Zeolites 
 
These are mostly crystalline aluminium silicates 
which exists naturally and are also produced 
synthetically. They have a three-dimensional 

structure with pores and consists of silicon, 
aluminium, and oxygen ions. The silicon ions are 
neutrally loaded in the crystal structure. The 
aluminium ions cause negative areas to exist. In 
order to keep the load balanced, a cation (Na

+
, 

K
+
…) or a proton (H

+
) is placed in the pores as a 

counter-ion. This special characteristic makes it 
suitable for molecular sieves. Over 190 of this 
unique compound’s frameworks have been 
identified and just over 35 of them are naturally 
occurring [68]. Naturally occurring zeolites are 
very useful in both industrial and domestic 
processes. The large discovery of nearly purified 
zeolites in the volcanic tuffs in the western United 
States in 1957 led to it widespread adoption and 
usage. Before then, there were no standard on 
the use of this compound. Natural zeolites are a 
significant class of minerals used in industry              
and other applications [69]. The era of 
commercial natural zeolite began with the 1957 
discovery of sizable amounts of relatively high 
purity zeolite minerals in volcanic tuffs in   
western United States and several other nations. 
Prior to it, there was no evidence that zeolite 
minerals with qualities suitable for use as 
molecular sieve materials could be found in 
significant concentrations. As new adsorbent 
materials with enhanced stability characteristics, 
the natural zeolites chabazite, erionite, and 
mordenite began to be commercialized in 1962 
as molecular sieve zeolites((  [69].                 
During the 1960s, clinoptiolite was used in 
wastewater treatment and radioactive waste 
recovery due to its exceptional stability qualities 
as well as its strong cation exchange                
selectivity for cesium, strontium, and ammonium 
ions [69]. 
 
Zeolites were first presented in 1954 as 
adsorbents for industrial separations and 
purifications. They are presently used in a 
number of applications due to their distinctive 
porous qualities. in They are employed in the 
building industry, agriculture, animal husbandry, 
petrochemical cracking, water softening and 
purification, the separation and elimination of 
gases and solvents, and these activities [69][70]. 
Zeolites are crystalline aluminosilicates made of 
SiO4 and AlO4 tetrahedra connected to one 
another by sharing all of their oxygen atoms, 
resulting in regular intra-crystalline cavities and 
channels with molecular dimensions. Zeolites are 
distinguished by the fact that their frameworks 
are composed of 4-coordinated atoms creating 
tetrahedra. By joining their corners, these 
tetrahedra form a wide range of exquisite forms. 
Small molecules can access the framework 
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structure's linked cages, cavities, or channels 
because they are large enough. The structure of 
substantial holes explains why these compounds 
consistently have low specific densities. The 
gaps of zeolites, which are utilized in a variety of 
applications, are connected and form long, wide 
channels that vary in size depending on the 
compound. The ions and molecules that live 
there can easily drift into and out of the structure 
thanks to these channels. The negative charge of 
the aluminosilicate structure attracts the positive 
cations that live in cages to balance the negative 
charge. Zeolites have more substantial cages in 
their structures than the majority of other 
tectosilicates [71]. Zeolites have found significant 
applications in both agriculture and 
environmental protection. Zeolite-filled sorption 
columns can be used for the treatment of 
wastewater containing heavy metal ions [71,72] 
or radioactive isotopes [73]. The removal of 
ammonium ions from municipal, industrial, and 
agricultural wastes is also possible [74]. Zeolites 
can be employed in agriculture as feed additives, 
agrochemical component transporters, and in the 
treatment of soil and fish [75]. Additionally, 
attempts have been made to change their 
structure so that they have catalytic [76] or 
antibacterial [77] qualities. After all, they are 
frequently utilized in several homes as pet litter. 
 

On the other hand, because their properties are 
solely dependent on their crystal structure, 
natural zeolites have a limited range of industrial 
uses. The main drawback is that the channels 
are too tiny (clinoptilolite, the most prevalent type 
in nature, has a channel diameter of 0.30–4 nm 
[68] which prevents the adsorption of bigger gas 
molecules and chemical compounds. Zeolite 
deposits are a non-renewable resource as well. 
Numerous attempts were made to create zeolites 
in the laboratory due to the requirement for the 
synthesis of molecular sieves and adsorbents 
with highly particular characteristics. The main 
drawback is that the channel sizes are too small 
(0.30–4 nm for clinoptilolite, the most prevalent 
kind in nature).  
 

2.2.3 Artificial zeolites 
 

Zeolites are acknowledged as minerals with a 
natural origin, although there are already over a 

hundred different varieties of zeolite structures 
that can be produced artificially. Zeolites were 
created naturally when volcanic ash and the 
water in the fundamental lakes came into 
contact. Several thousand years passed during 
this process. In a lab setting, hydrothermal 
processes can be attempted to mimic utilizing 
increased pressure or temperature, natural raw 
materials, and/or synthesized silicates. 
Equipment, clean substrates, and energy are 
needed for the synthesis reaction. As a result, 
the product's cost could be significantly greater 
than the cost of natural zeolite. As a result, while 
attempting to lower the cost of the reaction itself, 
research frequently focuses on the hunt for more 
affordable and readily available substrates for the 
manufacture of zeolites. Environmental factors 
are shaping current developments in research on 
the synthesis of zeolites, which implies the 
utilization of natural or waste raw materials for 
this purpose. Zeolite synthesis involves the use 
of volcanic glasses, such as perlite, pumice and 
diatomites. However, aluminosilicate waste 
products or expanded perlite waste are 
frequently used to make zeolites [78]. However, 
using natural raw materials to produce zeolites 
has economic advantages when compared to 
using synthetic substrates. Synthesis using raw 
materials with a complex chemical composition 
will not give the product 100 percent purity, and 
zeolites obtained in this way are excluded from 
many significant commercial applications. Zeolite 
material generated using the aforementioned 
techniques is predicted to cost in the middle of 
natural and synthetic zeolite. The use of one of 
these technologies, however, might prove to be 
the most cost-effective option given that costs for 
waste storage and utilization will definitely rise. 
Like natural zeolites, synthetic zeolites have a 
variety of structures and characteristics.  
Individual varieties of zeolites crystallize 
depending on factors such reaction duration, 
temperature, and pressure as well as the 
chemical make-up of the reaction mixture, 
including the reagent concentration [79]. The 
kinds of phases that develop in these systems 
are generally well understood. According to the 
synthesis parameters, the primary products are 
analcime, zeolite Na-P1 and hydroxysodalite 
(Fig. 7; a – c) [80]. 
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Fig. 7. Microstructures of zeolites obtained in hydrothermal conditions at elevated pressure: 
(a) analcime (b) zeolite Na-P1 (c) hydroxysodalite 

 
2.2.4 Metal-organic frameworks 
 
Metal-Organic Frameworks (MOFs) also known 
as coordination polymers are captivating 
crystalline nanomaterials made up of organic 
linkers (bridging ligands) and inorganic nodes 
(metal cations) that extend infinitely into two or 
three dimensions through metal-ligand bonding. 
They belong to a group of synthetic porous 
materials that have three-dimensional structures 
made of metal ions and organic molecules (or 
ligands) [81]. Like other crystalline porous 
materials such as zeolites, MOFs allow outside 
molecules to adsorb on their pores [81]. MOFs 
constitute of a new class of materials, which 
could serve as an ideal platform for the 
development of next-generation CO2 capture 
materials because of their large capacity for 
adsorption of gases and easy tunability of their 
structures. Their structures and properties can be 
tailored to meet the needs of particular 
applications because the pore size, pore shape, 
network topology, and surface functioning of 
MOFs can be systematically modified through 
chemical alteration. “During synthesis, metal 
ions/clusters, known as secondary building units 
(SBUs), are linked by organic molecules through 
the self-assembly of the individual components. 
The link/interaction is formed through strong 
coordination bonds between the molecules. This 
serves as the structural backbone of the 
framework” [82]. The size and shape of the 
organic linkers, along with the geometry of the 
SBUs, significantly influence the structural 
configuration and characteristics of MOFs. 
Because of this information, MOFs can be 
created to produce the desired crystal shape, 
pore size, and functional application. For 
instance, Zhang et al. [83] improved the CO2 
adsorption capacity of zeolitic imidazolate 
framework-8 (ZIF-8) by altering the surface 
basicity using ammonia impregnation and heat 
treatment in nitrogen and hydrogen 
atmospheres. The overall number of basic sites 

in the redesigned ZIF-8 significantly increased. 
The sample redesigned by ammonia 
impregnation had the greatest basicity, followed 
by those redesigned by hydrogen and nitrogen 
treatments. Due to CO2's acidic nature, the 
modified ZIF-8 samples had a lot of total basic 
sites, which enhanced CO2 uptake. According to 
the results obtained by [83], the sample 
transformed by ammonia impregnation had the 
highest capacity for CO2 adsorption, with 330 
mg/g. This is a 45% increase in CO2 adsorption 
over the original sample, which had a CO2 
uptake of 225 mg/g. 
 
“In the design of MOFs, stability is an 
indispensable factor. To achieve the desired 
application, MOFs must be thermally, 
hydrothermally, chemically, and mechanically 
stable” [84]. “The stability of MOFs is influenced 
by the oxidation state of the compound, the 
metal-ligand coordination geometry, and acid 
dissociation constant (pKa) of the ligand. The 
metal ligand bond in MOFs hydrolyses in 
aqueous medium, which reduces their chemical 
stability” [85]. “However, the chemical stability of 
MOFs can be synthetically improved using high 
valence metal ions (Fe

3+
, Zr

4+
) and by bonding 

between divalent metal ions and nitrogen-
containing ligands like imidazolates” [84]. There 
are numerous ways to produce metal-organic 
frameworks. Although solvothermal synthesis is 
the predominant method used, other methods 
have been employed as alternatives, including 
hydrothermal synthesis, microwave aided 
synthesis, electrochemical synthesis, 
sonochemical synthesis, and mechanochemical 
synthesis. Most MOF synthesis processes take 
place in liquid phase and include heating a 
mixture of organic linkers (bridging ligands), such 
as carboxylates, phosphates, sulfonates or 
heterocyclic compounds with a metal salt in a 
solvent system that contains an ionizing solvent 
functionality. Solvothermal and hydrothermal 
approaches, with typical reaction periods of 



 
 
 
 

Victor et al.; JMSRR, 10(1): 72-98, 2022; Article no.JMSRR.92638 
 
 

 
87 

 

several hours to days, are the most widely used 
methods for MOF synthesis as shown in Fig. 5. 
The synthesis conditions of the different 

preparation routes and percentage of MOFs 
synthesized using the various techniques (Fig.9) 
[86] .  

 

 
 

Fig. 8. Schematic diagram showing Conventional solvothermal synthesis of MOFs 
 

 
 

Fig. 9. (a) Synthesis conditions commonly used for MOF preparation (b) summary of the 
percentage of MOFs synthesized using the various techniques 
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The synthesis of MOFs usually involves post-
synthetic modification (PSM). When synthesizing 
MOFs, integration of functional groups of interest 
is typically challenging [87]. However, by post-
synthetic modification processes, desirable 
functionalities can be added to MOFs. Post 
synthesis modification involves the addition of 
extra functional group(s) to MOFs that have 
already undergone synthesis to accomplish 
specific application goals. Protonation or                 
doping of MOFs in a non-covalent interaction, 
coordinate interaction, or covalent interaction    
are two methods for post-synthetic modification 
[88]. The addition of numerous capabilities                
to the same framework and the creation of a 
variety of MOFs with the same topology              
but bearing different functionality are two                   
major advantages of post-synthetic              
modification. 
 
Due to MOFs' distinctive structural 
characteristics, further potential applications 
have recently received a lot of attention. Its 
outstanding gas capturing ability has been 
designated for the separation of numerous 
undesired and environmentally dangerous 
chemical species, which is why MOFs are 
becoming more and more appealing for use in 
environmental applications [89]. MOFs are 
preferred over zeolites, activated carbon and 
other conventional adsorbents because of their 
large surface area and well-defined pore 
properties which makes them more useful for 
volume specific applications such as separation, 
purification and adsorption processes [89]. Metal 
Organic Frameworks must be activated before 
they are used as adsorbents. Activation of MOFs 
involves the removal of solvent molecules from 
their pores to open the void spaces within the 
crystal lattice [90]. The synthetic MOF is heated 
to force solvent molecules out of the pores, 
which activates the structure. The active open 
metal sites, which exhibit Lewis acidity, acts as 
adsorption or binding sites where CO2 molecules 
attach and coordinate to the surface of the 
material through electrostatic interaction [91]. 
Evaporation removes the majority of solvent 
molecules that have been encapsulated. 
However, activation is accomplished under 
vacuum at extremely high temperatures in 
situations when solvent molecules exhibit 
significant interactions with either metal ions or 
organic linkers.  
 
Given their high gas adsorption capacity and 
porosity, metal-organic frameworks are viewed 
as potential candidates for catalytic CO2 removal 

from flue gas. A number of metrics are used to 
assess how well metal-organic frameworks trap 
carbon dioxide. “A MOF material is typically 
deemed appropriate for CO2 capture if it has a 
high CO2 capture/storage capacity with quick 
adsorption/desorption kinetics, high selectivity or 
affinity to CO2, high enthalpy/heat of CO2 
adsorption (Qst) and is stable under capture and 
regeneration conditions” [91]. Although physical 
adsorbents such as MOFs, Zeolite and Carbon-
based adsorbents prove to be effective CO2 
adsorbents at low temperature and high 
pressure, they always adsorb water vapor in 
preference to CO2 and this result to low CO2 at 
low pressure [92]. Therefore, these adsorbents 
may not be appropriate sorption materials for 
post-combustion gas treatment. In spite of the 
afore mentioned short coming, remarkable 
improvements have been achieved in the 
development of better CO2 adsorbents such as, 
Amine-modified porous materials, Zeolite-Metal-
Organic Frameworks. These modified porous 
materials have large surface area and high 
carbon CO2 adsorption capacities even at low 
pressure. Certain structural and chemical 
characteristics of MOFs enable CO2 uptake in 
post-combustion capture through pre- and post-
synthetic alterations. These characteristics 
include hydrophobicity, heteroatoms, open metal 
sites, and SBU interactions [93]. By activating the 
MOF material, open metal sites, also known as 
coordinately unsaturated metal sites, are 
produced. The synthetic MOF is heated to force 
solvent molecules out of the pores, which 
activates the structure. The Lewis acidity-
exhibiting active open metal sites serve as 
binding or adsorption sites where CO2 molecules 
cling to and coordinate to the material's surface 
through electrostatic contact [93]. The selectivity 
and absorption of CO2 are improved by metal-
organic frameworks with co-ordinatively 
unsaturated metal sites because they have a 
high heat of CO2 adsorption at low pressures 
[93]. According to a study by Britt’s group [94], 
Mg-MOF-74 effectively absorbs 8.9 wt.% of CO2 
from a gas mixture containing 20% CO2 in 
methane with no discernible uptake of methane. 
According to a comparison study, Zn-MOF-74, 
which is structurally identical to Mg-MOF-74, only 
absorbs 0.35 wt.% of CO2 [94]. The high CO2 
adsorption capability of Mg-MOF-74 is therefore 
attributed, according to the authors, to the 
interaction between the gas molecule and the 
Mg

2+
 ion. Nuclear magnetic resonance (NMR) 

simulations of CO2 dynamics in Mg-MOF-74 
open metal sites by [95] indicated a robust 
physical connection between the gas molecule 
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and the MOF framework. “In addition, MOFs 
could separate CO2 from other gases through the 
molecular sieving effect or size exclusion, i.e., 
only gas molecules with appropriate kinetic 
diameter can pass through the pores of the MOF. 
The specific surface area, pore volume and pore 
size distribution of metal organic frameworks are 
crucial factors that affect shape-selective 
adsorption and catalysis. Through pore- and 
volume-based manipulations, MOFs can be 
highly modular shape-selective catalysts”              
[96]. 

 
2.2.5 Covalent organic framework 

 
“Covalent organic frameworks (COFs) are 
porous crystalline organic polymers synthesized 
by the covalent linkage of organic molecules 
bonded in a repeating fashion to form a porous 
crystal that is ideal for gas adsorption and 
storage. COFs are promising because of their 
chemical and thermal stabilities as well as 
synthetic versatility, giving rise to a wide variety 
of functional and structural designs. They are 
constructed by linking well-defined organic 
building units through strong covalent bonds 
such as C-C, C-N, C-O, B-O, C-N and C-Si. They 
are usually synthesized by reversible 
condensation reactions where the reversibility 
originates from the hydrolysis back reaction. 
Their synthesis includes but not limited to the 
following organic reactions, viz; the formation of 
B-O (boronate, boroxine and borosilicate), C-N 
(imine, hydrazine, and squaraine), C-N (triazine 
and imidization), B-N (borazine) and N-N 
(azodioxides) bond linkages” [97]. “Therefore, 
many synthetic strategies have been developed 
for the synthesis of COFs of different dimensions 
and with different textural properties. Compared 
with other crystalline porous solid adsorbents 
(inorganic zeolites and hybrid MOFs), COF 
materials possess the advantage of low density, 
high permanent surface areas, high chemical 
and thermal stability, columnar p-stacking 
structure, tunable pore size and structure         
and versatile covalent combination of building 
units” [97]. “All these advantages have             
attracted considerable interest of scientific 
community in COFs, thereby making the 
materials new candidates for important 
applications in gas adsorption, optoelectronics, 
catalysis, gas separation, proton conductivity, 
chemical sensor, drug delivery, energy              
storage and chromatographic separation”               
[97]. 
 

The ability of the synthesized COF materials to 
have the combined properties of stability, 
crystallinity, and porosity is one of the key issues 
in the field of COFs, and this needs to be 
considered in order to accelerate functional 
exploration and applications of COFs, particularly 
for CO2 capture. Kandambeth et al. [98] 
developed a strategy to protect the COF interior 
by introducing     functionalities adjacent to 

the Schiff base        centers in COFs and 

thereby forming an intramolecular         
 N hydrogen bonding, to enhance the chemical 
stability and crystallinity in 2D porphyrin COFs. 
This targeted COF, namely DhaTph, compared 
to methoxysubstituted COF (DmaTph) analogue 
where the hydrogen-bonding interaction has 
been removed, showed better chemical stability, 
crystallinity, and higher porosity. The SBET of 
DhaTph (1305 m

2
 /g) was higher than that of 

DmaTph (431 m
2
 /g) as calculated. The high 

surface area of DhaTph was attributed to the 
improved crystallinity of this material due to the 
strong intramolecular          N hydrogen 
bonding interactions. The CO2 uptake of DhaTph 
was reported to be 128 mg/g at 273 K/1 bar, 
while DmaTph shows lower CO2 uptake of 73 
mg/g. Chen’s group [99] also reported synthetic 
control over crystallinity and porosity of COFs 
through management of interlayer interactions 
based on self-complementary p-electronic force. 
They used imine-linked porphyrin COFs, in which 
fluoro-substituted and non-substituted arenes at 
different molar ratios were integrated into the 
edge units. The self-complementary p-electronic 
force was reported to improve the crystallinity 
and enhance the porosity by maximizing the total 
crystal stacking energy and minimizing the unit 
cell size. Consequently, the COF consisting of 
equimolar amounts of fluoro-substituted and non-
substituted units were reported to show the 
largest effect. Their study suggests a new means 
of designing COFs with enhanced crystallinity 
and porosity through management of interlayer 
interaction. The large surface area and tuneable 
pore size are important advantages for COFs to 
be used for gas adsorption and purification. One 
of the most challenging issues in the field of 
COFs is the combined features of stability, 
crystallinity and porosity in COF materials, which 
are important parameters for their applications in 
CO2 capture. Synthetic strategies enabling the 
controlled synthesis of microporous crystalline 
structures that are hitherto of interest to CO2 
capture at 273 K/1 bar and 298 K at higher 
pressure are therefore of paramount importance 
to CCS technology.  
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The CO2 uptake performance at low pressure 
depends on the pore width rather than the SBET 

because the adsorption at 1 bar is believed to be 
a micropore diameter dominated process. The 
CO2 uptake capacity of COFs at 273 K/1 bar has 
been reported to reveal that COFs with 
micropore diameter smaller than 1 nm usually 
possess large CO2 uptake capacity [98]. “Also, 
synthesis of COFs with specific polar groups on 
the surface of pore is another effective way of 
enhancing CO2 uptake performance at low 
pressure. Compared with boron-based COFs, 
the imine-based and triazine-based COFs show 
higher CO2 uptake, which thus indicates that 
nitrogen groups in COFs could act as Lewis-base 
active sites that attract the Lewis-acidic CO2 
molecules, thus enhancing CO2 uptake 
performances” [100]. “High pressure gas storage 
of CO2 using porous materials is important for 
natural gas purification processes. Compared to 
the low-pressure adsorption, high-pressure 
adsorption of COFs is equally important to the 
CO2 storage. COFs exhibit different features for 
CO2 storage at high pressure in contrast to their 
CO2 uptakes at low-pressure. For instance, at 
high-pressure, the CO2 uptake capacities of 
COFs are reported to be dependent of SBET and 
pore volume, with COF-10 exhibiting the              
highest SBET of 1760 m

2
 /g and largest CO2 

uptake capacity of 1010 mg/g at 298 K/55 bar” 
[101]. Generally, for the high-pressure CO2 
uptake, the greater the BET surface area and 
pore volume, the larger the CO2 capture       
capacity. An effective strategy to enhance                
CO2 uptake performance at high pressure              
is to target high surface area and pore                 
volume for COFs during their synthesis              
routes.  

 
2.2.6 Carbon nanotubes 

 
Carbon nanotubes (CNT) comprise a large group  
of  nanometre-thin  hollow  fibrous  materials with  
different physicochemical  characteristics  (e.g.,  
length  to  diameter  ratios,  atomic configuration,  
impurities, defects, and functionalization). With 
respect to their different physicochemical 
characteristics, properties such as electrical, 
optical, thermal conductivity, tensile strength, and  
chemical  reactivity are typical of CNT [102]. 
Therefore, CNT has been found useful in a wide 

range of industrial applications, which could allow 
performance enhancement in products, 
specification alterations, gas and energy storage, 
additives in composite nanomaterials etc. [103]. 
However, their potency is based on the type of 
application and quality of properties in view. In 
this review, CNT application will be focused on 
its usage as an adsorbent in captured carbon 
storage. High amount of CO2 emission from the 
world’s major energy source over the years 
which has been the fossil fuels, has drawn 
detrimental consequences to the world’s             
climatic condition. This has motivated several 
studies aimed at reducing the environmental 
carbon concentration level to acceptable 
standards.  Of recent, the incorporation of amine 
functional groups to porous solid materials for 
enhanced CO2 adsorption have been studied 
[104].  
 
CNTs has been found useful as adsorbent for 
CO2, which could make it a viable solution in the 
carbon capture and storage research goal, as it 
is compatible with amine impregnation. The large 
surface area possessed by CNT with good 
geometric structure is a desired characteristics in 
the preparation of composite adsorbent for CO2 
capture. Also, they are hydrophobic,  and the 
presence of water vapour would have no adverse 
effects on them [105]. This is an advantage over 
other solid adsorbents such as zeolites. 
Therefore, the hydrophobic property of CNT 
could be explored in finding composite 
adsorbents with great resistance to water, for 
CO2 capture from flue gas. Two major types of 
CNT have been reportedly used in adsorption. 
These are single-walled nanotubes (SWCNTs) 
and multi-walled nanotubes (MWCNTs), [106]. 
The SWCNT are made of one single layer of 
graphene cylinder, whereas the MWCNT is 
composed of many layers of graphene cylinders 
nested inside each other [107]. This structural 
difference gives each type of CNT different 
properties that could be explored and exploited 
towards developing composite materials with 
high CO2 adsorption capacity. The properties of 
CNTs with the selected properties all applying to 
SWCNT have been listed below (Table 4) [103]. 
Some listed properties including aspect ratio and 
tensile modulus are also shared by high 
nanotexture c-MWCNTs.  
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Table 4. Properties of carbon nanotubes 
 

Properties Values Comments 

Aspect ratio ~1 000 – 10 000 Possibly higher. 
Specific surface area ~ 2 780 m2/g When considering both surfaces of open 

SWCNTs. 
Tensile strength > 45 GPa Other values up to 100 GPa can be found in 

the literature. 
Tensile modulus 1 to 1.3 TPa Independent on diameter when > 1nm. 
Tensile strain > 40% Provides toughness values higher than that 

of spider web. 
Flexural modulus 1.2 TPa   
Thermal stability > 3000˚C In oxygen-free atmosphere. 
Electrical conductivity 104 – 107 S/cm Better than copper. 
Transport regime Ballistic, up to 

superconductivity 
Tc  < 1 k 
 

Thermal conductivity ~ 6 000 W/mk Better than diamond 
Electron emission 106 – 109 A/cm Highest current density 

 
Methods such as grafting or impregnating a 
surfactant onto the surface of CNT had been 
proven to enhance the CO2 adsorption capacity 
of the composite material. [108] reported that 
impregnating polyethyleneimine onto MWCNT 
increased the CO2 adsorption capacity of the 
CNT by 200%. Also, [109] made reports on the 
effect of grafting polyaspertamine surfactant onto 
the surface of MWCNTs which could result in 
increased the CO2 adsorption of the material by 
500%. Furthermore, MWCNT/3-
aminopropyltriethoxysilane (APTS) performed 
better in  CO2 adsorption than amine-
functionalized carbon in an experiment carried 
out by Su’s group and the theoretical 
regeneration energy displayed by the composite 
material was lower when compared to that of 
amine-functionalized activated carbon [110]. In 
addition, [104] found out that SWCNTs showed 
the highest CO2 adsorption capacity (29.97 
gCO2/kg adsorbent) compared to the MWCNTs 
(12.09 gCO2/kg adsorbent), a 150% increase in 
adsorption capacity over MWCNTs was 
observed in the experiment carried out. However, 
there has been limited literature on the CO2 
adsorption capacity of CNTs for CO2 capture with 
respect to the use of SWCNTs. 
 
2.2.7 Mesoporous silica 
 
Considering low-temperature CO2 removal 
options (such as activated carbons, metal-
organic framework (MOFs)-based adsorbents, 
zeolite) [111-114], the loading capacity of amines 
supported on porous solid materials have been 
identified as a good prospect when compared to 
the one of liquid amines. Also, its enhanced 
adsorbing capacity in the presence of water, 

acceptable kinetics, high selectivity, and simple 
synthesis have made it desirable in comparison 
to the conventional adsorbents. Inorganic 
mesoporous materials (such as silica) are 
suitable for this purpose in that they possess 
large and accessible pore volume which allows 
for grafting of amines without significant 
reduction of CO2 mobility. Furthermore, they tend 
to be stable both mechanically and thermally in 
the presence of low-temperature post-
combustion gases [113]. This implies that they 
can accommodate the amine molecules and 
provide relative advantage of high affinity of 
amines to CO2 with the high surface area of a 
porous adsorbent [112]. Both Zeolites and MOFs 
are considered to have a high CO2 capture 
capacity, and some of them are quite stable, 
however they are costly. Wide range of 
separation processes finds zeolite an efficient 
shape-selective sorbent due to their polarity and 
the presence of pores [115]. 
 
Studies on mesoporous silicas as adsorbents for 
CO2 capture have been reported in literature 
including MCM-48 [116], MCM-41 [117], SBA-15 
[118]. SBA-15 material was able to provide high 
stability, and the presence of effective micro 
pores with its meso-channels, which contribute to 
gas physisorption [119, 120]. 
 

3. CONCLUSION 
 
Although much study has been done regarding 
these adsorbents, their application on an 
industrial level is still quite inchoate. Some of 
these sorbents still suffer from lack of stability 
over multiple CO2 adsorption and desorption 
cycles. As a result, more work still needs to be 
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done in increasing their CO2 adsorption capacity, 
mechanical and thermal strength. Further 
success in CO2 capture, storage and utilization is 
not just a function of the study of conventional 
materials, but also depends on the discovery and 
synthesis of novel materials with high CO2 
capture capacity, good thermal and recycling 
stability. These novel materials which could be 
advanced polymers, organic materials, inorganic 
materials and hybrids of organic and inorganic 
materials should possess a high density of basic 
functional groups or active sites. For catalytic 
applications including the water-gas shift, steam 
reforming and preferential oxidation reactions, 
high temperature CO2 adsorbents (CaO and 
alkali ceramics) and intermediate temperature 
CO2 adsorbents (most notably LDHs) are still 
subject to poor thermal stability in the reaction 
temperature ranges. The expectation is that 
more CO2-adsorbent enhanced catalytic 
reactions will be identified and studied in the 
future. To achieve the desired improvements in 
adsorption capacity and multicycle durability of 
CO2 adsorbents, the acquisition  and analysis of 
data from existing adsorption reactors, 
regeneration processes and integrated capture 
systems is vital. The development of advanced 
adsorbents for CO2 capture will foster the 
realization of techno-economical systems that 
will combine cutting-edge CO2 capture 
technologies and associated processes such as 
hydrogen generation in reforming reactions, 
electricity generation using hydrogen, and water 
treatment. 
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