

Approximation Schemes for the 3-Partitioning Problems

Jianbo Li¹, Honglin Ding²

¹School of Management and Economics, Kunming University of Science and Technology, Kunming, P. R. China
²Department of Mathematics, Yunnan University, Kunming, P. R. China
Email: dinghonglinyn@126.com

Received 2012

ABSTRACT

The 3-partitioning problem is to decide whether a given multiset of nonnegative integers can be partitioned into triples that all have the same sum. It is considerably used to prove the strong NP-hardness of many scheduling problems. In this paper, we consider four optimization versions of the 3-partitioning problem, and then present four polynomial time approximation schemes for these problems.

Keywords: 3-partitioning Problem; Approximation Scheme

1. Introduction

The 3-partitioning problem is a classic NP-complete problem in Operations Research and theoretical computer science [10]. The problem is to decide whether a given multi set of nonnegative integers can be partitioned into triples that all have the same sum. More precisely, for a given multi set S of 3 m positive integers, can S be partitioned into m subsets S_1, S_2, \dots, S_m such that each subset contains exactly three elements and the sums of elements in the subsets (also called loads or lengths) are equal?

For the optimal versions of the 3-partitioning problem, the following four problems have been considered.

Problem 1[13], [14] MIN-MAX 3-PARTITIONING:

Given a multi set $S = \{p_1, p_2, \dots, p_{3m}\}$ of 3m non-negative integers, partitioned S into m subsets S_1, S_2, \dots , S_m such that each subset contains exactly three elements and the maximum load of the m subsets is minimized.

Problem 2 [6] MIN-MAX KERNEL 3- PARTI-TIONING:

Given a multi set $S = \{r_1, r_2, \dots, r_m; p_1, p_2, \dots, p_{2m}\}$ of 3m nonnegative integers, where each r_j is a kernel andeach p_j is an ordinary element, partitioned S into m subsets S_1, S_2, \dots, S_m such that (1) each subset contains exactly one kernel, (2) each subset contains exactly three elements, and (3) the maximum load of the m subsets is minimized.

Problem 3 [5] MAX-MIN 3-PARTITIONING:

Given a multi set $S = \{p_1, p_2, \dots, p_{3m}\}$ of 3m nonnegative integers, partitioned S into m subsets S_1, S_2, \dots, S_m such that each subset contains exactly three elements and the minimum load of the m subsets is maximized.

Problem 4 [5] MAX-MIN KERNEL3-PARTITIONIN

G:

Given a multi set $S = \{r_1, r_2, \dots, r_m; p_1, p_2, \dots, p_{2m}\}$ of 3m nonnegative integers, where each r_j is a kernel andeach p_j is an ordinary element, partitioned S into m subsets S_1, S_2, \dots, S_m such that (1) each subset contains exactly one kernel, (2) each subset contains exactly three elements, and (3) the minimum load of the m subsets is maximized.

The 3-partitioning problems have many applications in multiprocessor scheduling, aircraft maintenance scheduling, flexible manufacturing systems and VLSI chip design (see [3, 13]). Kellerer and Woeginger [14] proposed a Modified Longest Processing Time (MLPT, for short) with performance ratio 4/3-1/3mMIN-MAX 3-PARTITIONING. Later, Kellerer and Kotov [13] designed a 7/6 -approximation algorithm which is the best known result for MIN-MAX 3-PARTITIONING. Chen et al. [6] considered-MIN-MAX KERNEL 3-PAR- TITIONING and proved that MLPT has a tight approximation 3/2-1/2m .Chen et al. [5] considered MAX-MIN 3-PARTITIONING and MAX-MIN 3-PARTITIONING, and showed that MLPT algorithm has worst performance ratios (3m-1)(4m-2) and (2m-1)(3m-2), respectively. To the best of our knowledge, these are the best results.

A generalization of the 3-partitioning problem is the k-partitioning problem in which km elements have to be partitioned into m subsets each of which contains k elements. For the min-max objective, Babel, et al. [2] showed the relationship between the scheduling problems and the k-partitioning problem, and devised a 4/3-approximation algorithm. Upper (lower) bounds

and heuristic algorithms for the min-max k-partitioning problem can be found in [7-9]. He et al. [11] investigated the max-min k-partitioning problem and presented an algorithm with performance ratio $\max\{2/k,1/m\}$. Recently, Bruglieri et al. [4] gave an annotated bibliography of the cardinality constrained optimization problems which contains the k-partitioning problems.

Apparently, all four 3-partitioning problems considered in the current paper are NP-hard in the strong sense. Thus we are interested in designing some approximation algorithms. Recall that a polynomial-time approximation scheme (PTAS) for a minimization problem is a family of polynomial algorithms over all $\varepsilon > 0$ such that for every instance of the problem, the corresponding algorithm produces a solution whose value is at most $(1+\varepsilon)OPT$. Similarly, A PTAS for a maximization problem is a family of polynomial algorithm sover all $\varepsilon > 0$ such that for every instance of the problem, the corresponding algorithm produces a solution whose value is at least $(1-\varepsilon)$ OPT. Since four 3-partitioning problems are NP-hard in the strong sense, designing some PTASs for these problems is best possible.

Note that 3-partitioning problems are closely related to the parallel scheduling problem of minimizing the makes pan in which n jobs have to be assigned to m machines such that the maximum machine load is minimized. Hochbaum and Shmoys [12] first presented a PTAS for the makes pan problem by using dual approximation algorithms. Alon et al. [1] designed some linear time approximation schemes for the parallel machine scheduling problems by using a novel idea of clustering the small jobs into blocks of jobs of small but non-negligible size. The basic strategy of designing PTAS in [1,12] is to construct a new instance with a constant number of different sizes from the original instance, to solve the new instance optimally, and then re-construct a near optimal schedule for the original instance. Note that the approximation schemes in [1, 12] cannot be applied directly to the 3-par- titioning problems, because of the cardinality constraint.

To the best of our knowledge, there are no PTASs for the four 3-partitioning problems. In this paper, we first present four polynomial-time approximation schemes for the3-partitioning problems, respectively. As we shall see later, our result are adaptations of the framework of approximation scheme in [1], but with a new rounding method.

2. The Min-Max Objectives

2.1. Min-max 3-partitioningvv

given instance I_1 of MIN-MAX 3-PARTITIONING, we first compute a partition with value L_1 using MLPT algorithm in [14]. Kellerer and Woeginger [14] have proved that $OPT_1 \le L_1 \le 4/3 OPT_1$,

OPT. denotes the value of the optimal solution for in-

Let
$$\lambda_1 = \frac{4}{\varepsilon}$$
. For any $T \subseteq S$, let $p(T) = \sum_{p_j \in T} p_j$ be

the length of set T. For each element $p_j \in S$, we round

up to $p'_j = \frac{p_j}{L_1/\lambda_1} \frac{L_1}{\lambda_1}$, and then we get a new instance I'_1

with mult set S'. The following lemma about the relationship between instance I_1 and instance I_1' is important to our approximation scheme.

Lemma 1. The optimal value of instance I_1 is no more than $OPT_1 + \frac{3}{\lambda}L_1$.

Note that no element in instance I_1 is more than L_1 by the definition of L_1 , and in instance I_1 , all elements are integer multiples of $\frac{L_1}{\lambda}$. Thus, the number of different elements is atmost $\lambda_1 + 1$ in instance I_1 . Let $n_i^{(1)}$ $(i = 0, 1, ..., \lambda_1)$ denote the number of elements with size $i \frac{L_1}{\lambda}$. Clearly, $\sum_{i=0}^{\lambda_1} n_i^{(1)} = 3m$. By the fact OPT₁ $\leq L_1$ and Lemma 1, we can conclude that the optimal value of instance I_1 is at most $\left(1+\frac{3}{\lambda_1}\right)L_1$. Define a configure-

tion C_i as a subset of elements which contains exactly three elements in S' and has length no more than

$$\left(1+\frac{3}{\lambda_1}\right)L_1$$
.

It is easy to verify that the number of different configurations is at most $K_1 = (\lambda_1 + 1)^3$, which is a constant. Let a_{ij} denote the number of elements of size $i\frac{L_1}{2}$ in con-

figuration C_i and x_i be the variable indicating the number of occurrences of configuration C_i in a solu-

For each $t \in \{1, 2, ..., \lambda_1 + 3\}$, we construct an integerlinear program ILP, with arbitrary objective, and that the constraints are:

$$\sum_{j=1}^{K_{1}} a_{ij} x_{j} = n_{i}^{(1)}; i = 0, 1, 2, ..., \lambda_{1}$$

$$\sum_{j=1}^{K_{1}} x_{j} = m;$$
(2)

$$\sum_{j=1}^{K_1} x_j = m,$$
 (2)

$$x_{j} = 0; if \ p\left(C_{j}\right) > t \frac{L_{1}}{\lambda_{1}}$$
(3)

$$x_j \ge 0; j = 1, 2, ..., K_1$$
 (4)

Here, the constraints (1) and (2) guarantee that each-element is exactly in one subset. The constraints (3) mean that we only use the configuration with length no more $t\frac{L_1}{\lambda_1}$. Obviously,

OPT₁ = min min {
$$t \frac{L_1}{\lambda_1} | ILP_t$$
 has a feasible solution},

where OPT' denotes the optimal value of instance I_1 . In ILP_t , the number of variables is at most $K_1 = (\lambda_1 + 1)^3$, and the number of constraints is at most $\lambda_1 + 2 + (\lambda_1 + 1)^3$. Both are constants, as λ_1 is a constant. By utilizing Lenstra's algorithm in [15] whose running time is exponential in the dimension of the program but polynomial in the logarithms of the coefficients, we can decide whether the integer linear programming ILP_t has a feasible solution in time O(m), where the hidden constant depends exponentially on λ_1 . By solving at most K_1 integer linear programs, we get an optimal solution for instance I_1 . Since computing L_1 can be done in time O(mlogm) [14], and constructing the integer linear programs can be done in time O(m), we arrive at the following lemma.

Lemma 2.An optimal solution for instance I'_1 of MIN-MAX3-PARTITIONING can be computed in time O(mlogm).

For an optimal solution (S_1, S_2, \dots, S_m) for instance I_1 , replace each element $p_j \in S_i$ by element p_j in instance I_1 , and then we get a partition (S_1, S_2, \dots, S_m) for instance I_1 . This will not increase the objective. By Lemma 1, we have

$$\begin{aligned} \max_{i} \max_{i} p\left(S_{i}\right) &\leq OPT_{1} + \frac{3}{\lambda_{1}} L_{1} \\ &\leq \left(1 + \frac{4}{\lambda_{1}}\right) OPT_{1} \leq \left(1 + \varepsilon\right) OPT_{1} \end{aligned},$$

as
$$L_1 \le \frac{4}{3}OPT_1$$
 and $\lambda_1 = \frac{4}{\varepsilon} \ge \frac{4}{\varepsilon}$. Thus, (S_1, S_2, \dots, S_m)

is a $(1+\varepsilon)$ -approximation solution for instance I_1 . Hence, we achieve the following theorem.

Theorem 3. There exists a PTAS with running time O(mlogm) for MIN-MAX 3-PARTITIONING.

2.2. Min-max Kernel 3-Partitioning

For a given instance I_2 of MIN-MAX KERNEL 3-PAR-TITIONING, we first compute the value L_2 of the feasible solution produced by the algorithm in [6].

We have $OPT_2 \le L_2 \le \frac{3}{2}OPT_2$, where OPT_2 denotes the

value of the optimal solution for instance I_2 .

Let $\lambda_2 = \frac{9}{2\varepsilon}$. For each element in I_2 , we round it up to the next integer multiple of L_2 / λ_2 kg, i.e.,

$$r'_{j} = \frac{r_{j}}{L_{2} / \lambda_{2}} \frac{L_{2}}{\lambda_{2}} (j = 1, 2, ..., m)$$

and

$$p'_{j} = \frac{p_{j}}{L_{2} / \lambda_{2}} \frac{L_{2}}{\lambda_{2}} (j = 1, 2, ..., 2m).$$

Then we get a new instance I_2 with multi set S.

Similar to Lemma 1, we can obtain the following lemma.

Lemma 4. The optimal value of instance I_2 is no more than $OPT_2 + \frac{3}{\lambda_2}L_2$.

For convenience, let $R' = \{r_1', r_2', \dots, r_m'\}$. Note that the numbers of different elements in R' and S' - R' are at most $\lambda_2 + 1$ in instance I_2' . Let $n_i^{(2)}(i = 0, 1, \dots, \lambda_2)$ and $q_i^{(2)}(i = 0, 1, \dots, \lambda_2)$ denote the number of elements in R' and S - R with size $i \frac{L_2}{\lambda_2}$, respectively. Clearly,

 $\sum_{i=0}^{\lambda_1} n_i^{(2)} = m \quad \text{and} \quad \sum_{i=0}^{\lambda_1} q_i^{(2)} = 2m \; . \; \text{ Define a configuration}$ C_j as a subset of elements, which contains exactly one element in R' and two elements in S' - R' and has length no more than $\left(1 + \frac{3}{\lambda_2}\right) L_2$. It is easy to see that the number of different configurations is at most

 $K_2 = (\lambda_2 + 1)^2$, which is a constant. Let a_{ij} denote the number of elements in R' of size $i\frac{L_2}{\lambda_2}$ in configurate i o n C_j and b_{ij} denote the number of elements in S' - R' of size $i\frac{L_2}{\lambda_2}$ in configuration C_j . Let x_j be the variable indicating the number of occurrences of configuration C_j in a solution.

For each $t \in \{0,1,2,...,\lambda_1 + 3\}$, we construct an integer linear program ILP_t with arbitrary objective, and that the constraints are:

$$\sum_{j=1}^{K_2} a_{ij} x_j = n_i^{(2)}; i = 0, 1, 2, \dots, \lambda_1$$
 (5)

$$\sum_{i=1}^{K_2} b_{ij} x_j = q_i^{(2)}; i = 0, 1, 2, \dots, \lambda_1$$
 (6)

$$\sum_{j=1}^{K_2} x_j = m; (7)$$

$$x_{j} = 0, if \ p(C_{j}) > t \frac{L_{1}}{\lambda_{1}}$$
(8)

$$x_i \ge 0, j = 1, 2, \dots, K_2$$
 (9)

As before, by implementing Lenstra's algorithm in [15] at most K_2 times, we can find an optimal solution for instance I_2 .

Lemma 5. An optimal solution to instance I'_2 of MINMAXKERNEL 3-PARTITIONING can be computed in time O(mlogm).

For an optimal solution (S_1, S_2, \dots, S_m) for instance I_2 replace each element $r_j \in S_i$ and $p_j \in S_i$ by element r_j and p_j in instance I_2 , respectively. And then we get a partition (S_1, S_2, \dots, S_m) for instance I_2 . This will not increase the objective. By Lemma 4, we have

$$\max_{i} p(S_{i}) \leq OPT_{2} + \frac{3}{\lambda_{2}} L_{2} \leq \left(1 + \frac{9}{2\lambda_{2}}\right) OPT_{2}$$

$$\leq (1 + \varepsilon) OPT_{2} \max_{i} \max_{i} p(S_{i}) \leq OPT_{2} + \frac{3}{\lambda_{2}} L_{2},$$

$$\leq \left(1 + \frac{9}{2\lambda_{2}}\right) OPT_{2} \leq (1 + \varepsilon) OPT_{1}$$

as
$$L_2 \le \frac{3}{2}OPT_2$$
 and $\lambda_2 = \frac{9}{2\varepsilon} \ge \frac{9}{2\varepsilon}$.

Thus, (S_1, S_2, \dots, S_m) is a $(1+\varepsilon)$ -approximation solution for instance I_2 .

Hence, we achieve the following theorem.

Theorem 6. There exists a PTAS with running time $O(mlog\ m)$ for MIN-MAX Kernel 3-PARTITIONING.

3. The Max-Min Objectives

For a given instance I_3 MAX-MIN 3-PARTITION-ING, we first compute a partition with value L_3 using *MLPT* algorithm in [5]. Chen et al. [5] have proved that $\frac{3}{4}OPT_3 \le L_3 \le OPT_3$, where OPT_3 denotes the value of the optimal solution for instance I_3

Lemma 7. If there exists an element

$$p_j \ge \frac{4}{3}L_3 \ge OPT_3,$$

then there exists an optimal partition in which element p_j and the two smallest elements are in the same subset. Proof. Without loss of generality, we may assume

that
$$p_1 \ge p_2 \ge \dots \ge p_{3m-1} \ge p_{3m}$$
. If $p_1 \ge \frac{4}{3}L_3$, Let

 $(S_1^*,S_2^*,\ldots,S_m^*)$ be an optimal partition for instance I_3 , where $S_1^*=\{p_1,p_{i_1},p_{i_2}\}$. Note that $p_1\geq OPT_3$, $p_{i_1}\geq p_{3m-1}$, and $p_{i_2}\geq p_{3m}$. Interchanging p_{i_1} and p_{3m-1} , p_{i_2} and

 p_{3m} , respectively, cannot decrease the objective function. Thus, we get a new optimal partition in which p_1 and the two smallest elements are in the same subset.

With the help of Lemma 7, while there exists an element no less than $4/3L_3$, we delete it and the two smallest elements from S, and then handle a smaller instance. Thus, we may assume without loss of generality that in the end each element is less than $4/3L_3$.

Lemma 8. In any feasible solution for instance I_3 , the maximum load of the subsets is less than that $4L_3$.

Let $\lambda_3 = \frac{3}{\varepsilon}$. For each element $p_j \in S$, we round it

down to $p'_j = \frac{p_j}{L_3 / \lambda_3} \frac{L_3}{\lambda_3}$, and then we get a new instance

 I_3' . **Lemma 9.** The optimal value of instance I_3' is at least $OPT_3 - \frac{3}{\lambda_2}L_3$.

Note that all the elements in I_3 are integer multiples of $\frac{L_3}{\lambda_3}$. Thus, the number of different elements is at most

$$\frac{4}{3}\lambda_3$$
 in instance I_3' . Let $n_i^{(3)}\left(i=0,1,\ldots,\frac{4}{3}\lambda_3-1\right)$ de-

note the number of elements with size $i\frac{L_3}{\lambda_3}$. Clearly,

 $\sum_{i=0}^{\frac{4}{3}\lambda_3-1} n_i^{(3)} = 3m$. By Lemma 8, the maximum load of any

feasible solution for instance I_3 is less than $4L_3$. Define a configuration C_j as a subset of elements which contains exactly three elements in S and has length less than $4L_3$. The number of different configurations is

at most $K_3 = \frac{4}{3}\lambda_3^3$, which is a constant. Let a_{ij} denote

the number of elements of size $i\frac{L_3}{\lambda_3}$ in configuration

 C_j and x_j be the variable indicating the number of occurrences of configuration C_j in a solution.

For each $t \in \{0,1,2,...,4\lambda_3\}$, we construct an integerlinear program ILP_t with arbitrary objective, and that the constraints are:

$$\sum_{i=1}^{K_3} a_{ij} x_j = n_i^{(3)}; i = 0, 1, 2, \dots, 4\lambda_3$$
 (10)

$$\sum_{i=1}^{K_3} x_j = m; (11)$$

$$x_j = 0$$
; if $p(C_j) < t\frac{L_1}{\lambda_1}$ (12)

$$x_j \ge 0; j = 1, 2, ..., K_3$$
 (13)

Here, the constraints (10) and (11) guarantee that each element is exactly in one subset. The constraints (12) mean that we only use the configuration with length no Less than $t\frac{L_3}{\lambda_2}$. Obviously,

$$OPT'_3 = min \{t \frac{L_3}{\lambda_3} | ILP_t \text{ has a feasible solution} \},$$

where OPT_3 denotes the optimal value of instance I_3 . As in Section 2, by implementing Lenstra's algorithm in [15] at most K_3 times, we get an optimal solution of instance I_3 . Since computing L_3 can be done in O(mlogm) [5] and constructing the integer linear programs can be done in O(m), we arrive at the following lemma.

Lemma 10. An optimal solution for instance I_3 of-MIN-MAX 3-PARTITIONING can be computed in time O(mlogm).

For an optimal solution (S_1, S_2, \dots, S_m) for instance I_3 , replace each element $p_j \in S_i$ by element p_j in instance I_3 , and then we get a partition (S_1, S_2, \dots, S_m) for instance I_3 . This will not decrease the objective value. By Lemma 9, we have

$$\min_{i} p(S_{i}) \ge OPT_{3} - \frac{3}{\lambda_{3}} L_{3} \ge \left(1 - \frac{3}{\lambda_{3}}\right) OPT_{3}$$

$$\ge (1 - \varepsilon) OPT_{3}$$

as
$$L_3 \leq OPT_3$$
 and $\lambda_3 = \frac{3}{\varepsilon} \geq \frac{3}{\varepsilon}$. Thus, (S_1, S_2, \dots, S_m)

is a $(1-\varepsilon)$ -approximation solution for instance I_3 .

Hence, we achieve the following theorem.

Theorem 11. There exists a PTAS with running time O(mlogm) for MAX-MIN 3-PARTITIONING.

Similarly, we can obtain the following theorem. We omit the proof here.

Theorem 12. There exists a PTAS with running time O(mlogm) for MAX-MIN Kernel 3-PARTITIONING.

4. Conclusions

We have presented some PTASs for four optimization-versions of 3-partitioning problem. It is an interesting open question whether some similar PTAS can be developed for general objectives of 3-partitioning problem as in [1].

5. Acknowledgements

The work is supported by the National Natural Science Foundation of China [No. 61063011] and the Tianyuan Fund for Mathematics of the National Natural Science Foundation of China [No. 11126315].

REFERENCES

- [1] N. Alon, Y. Azar, G. J. Woeginger and T. Yadid, "Approximation Schemes for Scheduling on Parallel Machines," *Journal of Scheduling*, Vol. 1, 1998, pp. 55-66. doi:10.1002/(SICI)1099-1425(199806)1:1<55::AID-JOS2>3.0.CO;2-J
- [2] L. Babel, H. Kellerer and V. Kotov, "The k-partitioning Problem," *Mathematical Methods of Operations Re*search, Vol. 47, 1998, pp. 59-82. doi:10.1007/BF01193837
- [3] J. Brimberg, W. J. Hurley and R. E. Wright, "Scheduling Workers in a Constricted Area," *Naval Research Logistics*, Vol. 43, 1996, pp. 143-149. doi:10.1002/(SICI)1520-6750(199602)43:1<143::AID-N AV9>3.0.CO:2-B
- [4] M. Bruglieri, M. Ehrgott, H. W. Hamacher and F. Maffioli, "An Annotated Bibliography of Combinatorial Optimization Problems with Fixed Cardinality Constraints," *Discrete Applied Mathematics*, Vol. 154, 2006, pp. 1344-1357. doi:10.1016/j.dam.2005.05.036
- [5] S. P. Chen, Y. He and G. H. Lin, "3-partitioning for Maximizing the Minimum Load," *Journal of Combinatorial Optimization*, Vol. 6, 2002, pp. 67-80. doi:10.1023/A:1013370208101
- [6] S. P. Chen, Y. He and E. Y. Yao, "Three-partitioning Containing Kernels: Complexity and Heuristic. Computing, Vol. 57, 1996, pp. 255-272. doi:10.1007/BF02247409
- [7] M. Dell' Amico, M. Iori and S. Martello, "Heuristic Algorithms and Scatter Search for the Cardinality Constrained Plots Problem," *Journal of Heuristics*, Vol. 10, 2004, pp. 169-204.

doi:10.1023/B:HEUR.0000026266.07036.da

- [8] M. Dell' Amico, M. Iori, S. Martello and M. Monaci, "Lower Bound and Heuristic Algorithms for the *Lapartitioning Problem," European Journal of Operational Research, Vol. 171, 2006, pp. 725-742.
 - doi:10.1016/j.ejor.2004.09.002
- [9] M. Dell' Amico and S. Martello, "Bounds for the Cardinality Constrained" Problem. *Journal of Scheduling*, Vol. 4, 2001, pp. 123-138, doi:10.1002/jos.68
- [10] M. R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the Theory of NP-Completeness," W. H. Freeman, San Francisco, 1979.
- [11] Y. He, Z. Y. Tan, J. Zhu and E. Y. Yao, "k-Partitioning Problems for Maximizing the Minimum Load," Computers and Mathematics with Applications, Vol. 46, 2003, pp. 1671-1681. doi:10.1016/S0898-1221(03)90201-X
- [12] D. S. Hochbaum and D. B. Shmoys, "Using Dual Approximation Algorithms for Scheduling Problems: Theoretical and Practical Results," *Journal of Association for Computing Machinery*, Vol. 34, 1987, pp. 144-162. doi:10.1145/7531.7535
- [13] H. Kellerer and V. Kotov, "A 7/6-approximation Algorithm for3-partitioning and Its Application to Multiprocessor Scheduling," INFOR, Vol. 37, 1999, pp. 48-56.
- [14] H. Kellerer and G. Woeginger, "A Tight Bound for 3-partitioning," *Discrete Applied Mathematics*, Vol. 45, 1993, pp. 249-259. doi:10.1016/0166-218X(93)90013-E

CN

[15] H. W. Lenstra, "Integer Programming with a Fixed Number of Variables," *Mathematics of Operations* *Research*, Vol. 8, 1983, pp. 538-548. doi:10.1287/moor.8.4.538