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ABSTRACT 

The 3-partitioning problem is to decide whether a given multiset of nonnegative integers can be partitioned into triples 
that all have the same sum. It is considerably used to prove the strong NP-hardness of many scheduling problems. In 
this paper, we consider four optimization versions of the 3-partitioning problem, and then present four polynomial time 
approximation schemes for these problems. 
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1. Introduction 

The 3-partitioning problem is a classic NP-complete 
problem in Operations Research and theoretical com-
puter science [10]. The problem is to decide whether a 
given multi set of nonnegative integers can be partitioned 
into triples that all have the same sum. More precisely, 
for a given multi set  of 3 m positive integers, can  
be partitioned into m subsets 1 2  such that 
each subset contains exactly three elements and the sums 
of elements in the subsets (also called loads or lengths) 
are equal?  

S S
, , , mS S S

For the optimal versions of the 3-partitioning problem, 
the following four problems have been considered. 

Problem 1[13], [14] MIN-MAX 3-PARTITIONING: 
Given a multi set  of 3m non-

negative integers, partitioned S into m subsets 1 2  

m  such that each subset contains exactly three elements 
and the maximum load of the m subsets is minimized. 

 1 2 3, , , mS p p p  
, , ,S S 

S

Problem 2 [6] MIN-MAX KERNEL 3- PARTI-
TIONING: 

Given a multi set 1 2 m  of 
3m nonnegative integers, where each 

 1 2 2, , , ; , , ,mS r r r p p p   
jr  is a kernel an-

deach jp  is an ordinary element, partitioned S into m 
subsets 1 2  such that (1) each subset contains 
exactly one kernel, (2) each subset contains exactly three 
elements, and (3) the maximum load of the m subsets is 
minimized. 

, , , mS S S

Problem 3 [5] MAX-MIN 3-PARTITIONING: 
Given a multi set S 3m nonnega-

tive integers, partitioned S into m subsets 1 2, , , mS S S  
h subset contains exactly three elements and 

the minimum load of the m subsets is maximized. 

 1 2 3, , , mp p p  o f 

such that eac

Problem 4 [5] MAX-MIN KERNEL3-PARTITIONIN

G: 
Given a multi set  1 2 1 2 2, , , ; , , ,m mS r r r p p p    of 

3m nonnegative integers, where each jr  is a kernel an-
deach  is an ordinary element, partitioned S into m 
subsets 1 2  such that (1) each subset contains 
exactly one kernel, (2) each subset contains exactly three 
elements, and (3) the minimum load of the m subsets is 
maximized. 

jp
, , , mS S S

The 3-partitioning problems have many applications in 
multiprocessor scheduling, aircraft maintenance sched-
uling, flexible manufacturing systems and VLSI chip 
design (see [3, 13]). Kellerer and Woeginger [14] pro-
posed a Modified Longest Processing Time (MLPT, for 
short) with performance ratio 4 / 3  for 
MIN-MAX 3-PARTITIONING. Later, Kellerer and Ko-
tov [13] designed a  -approximation algorithm 
which is the best known result for MIN-MAX 
3-PARTITIONING. Chen et al. [6] considered-
MIN-MAX KERNEL 3-PAR- TITIONING and proved 
that MLPT has a tight approximation ratio 

1/ 3m

7 / 6

3 / 2 1/ 2m .Chen et al. [5] considered MAX-MIN 
3-PARTITIONINGand MAX-MIN KERNEL 
3-PARTITIONING, and showed that MLPT algorithm 
has worst performance ratios and (3 1)(4 2)m m 
(2 1)(3m m 2)  , respectively. To the best of our 
knowledge, these are the best results. 

A generalization of the 3-partitioning problem is the 
k-partitioning problem in which km elements have to be 
partitioned into m subsets each of which contains k ele-
ments. For the min-max objective, Babel, et al. [2] 
showed the relationship between the scheduling prob-
lems and the k-partitioning problem, and devised a 

-approximation algorithm. Upper (lower) bounds 4 / 3
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and heuristic algorithms for the min-max k-partitioning 
problem can be found in [7-9]. He et al. [11] investigated 
the max-min k-partitioning problem and presented an 
algorithm with performance ratio . Re-
cently, Bruglieri et al. [4] gave an annotated bibliography 
of the cardinality constrained optimization problems 
which contains the k-partitioning problems. 

max{2 / k,1/ m}

0

Apparently, all four 3-partitioning problems consid-
ered in the current paper are NP-hard in the strong sense. 
Thus we are interested in designing some approximation 
algorithms. Recall that a polynomial-time approximation 
scheme (PTAS) for a minimization problem is a family 
of polynomial algorithms over all    such that for 
every instance of the problem, the corresponding algo-
rithm produces a solution whose value is at most 

. Similarly, A PTAS for a maximization 
problem is a family of polynomial algorithm sover all 
 1 OPT

0   such that for every instance of the problem, the 
corresponding algorithm produces a solution whose 
value is at least  1   . Since four 3-partitioning 
problems are NP-hard in the strong sense, designing 
some PTASs for these problems is best possible. 

OPT

Note that 3-partitioning problems are closely related to 
the parallel scheduling problem of minimizing the makes 
pan in which n jobs have to be assigned to m machines 
such that the maximum machine load is minimized. Ho-
chbaum and Shmoys [12] first presented a PTAS for the 
makes pan problem by using dual approximation algo-
rithms. Alon et al. [1] designed some linear time ap-
proximation schemes for the parallel machine scheduling 
problems by using a novel idea of clustering the small 
jobs into blocks of jobs of small but non-negligible size. 
The basic strategy of designing PTAS in [1,12] is to con-
struct a new instance with a constant number of different 
sizes from the original instance, to solve the new instance 
optimally, and then re-construct a near optimal schedule 
for the original instance. Note that the approximation 
schemes in [1, 12] cannot be applied directly to the 
3-par- titioning problems, because of the cardinality con-
straint. 

To the best of our knowledge, there are no PTASs for 
the four 3-partitioning problems. In this paper, we first 
present four polynomial-time approximation schemes for 
the3-partitioning problems, respectively. As we shall see 
later, our result are adaptations of the framework of ap-
proximation scheme in [1], but with a new rounding 
method. 

2. The Min-Max Objectives 

2.1. Min-max 3-partitioningvv 

For a given instance 1I  of MIN-MAX 
3-PARTITIONING, we first compute a partition with 
value  using MLPT algorithm in [14]. Kellerer and 

Woeginger [14] have proved that 

1L

1 1 4 3OPT L OPT  1 , 
where  

1  denotes the value of the optimal solution for in-
stance 
OPT

1I . 

Let 1

4
λ


 . For any , let T S  

j

j
p T

p T p


   be  

the length of set T. For each element , we round 
it 

jp S

up to 1'

1 1 1

j
j

p L
p

L  
 , and then we get a new instance '

1I  

with mult set . The following lemma about the rela-
tionship between instance 1

'S
I  and instance '

1I  is im-
portant to our approximation scheme. 

Lemma 1. The optimal value of instance '
1I  is no more 

than 1 1
1

3
OPT L


 . 

Note that no element in instance 1I  is more than 1  
by the definition of , and in instance 

L

1L '
1I , all elements 

are integer multiples of 1

1

L


. Thus, the number of differ-  

ent elements is atmost 1λ 1  in instance '
1I . Let  (1)

in
 10,1, ,i    denote the number of elements with 

size 1

1

L
. Clearly, .By the fact 

1
(1)

0

3i
i

n




i m 1 1OPT L  


and Lemma 1, we can conclude that the optimal value of 

instance '
1I  is at most 1

1

3
1 L


 
 

 
. Define a configure- 

tion jC as a subset of elements which contains exactly 
three elements in and has length no more than 'S

1
1

3
1 L


 
 

 
. 

It is easy to verify that the number of different configura-
tions is at most  3

1 1 1K    , which is a constant. Let 

ija  denote the number of elements of size 1

1

L
i


 in con-  

figuration jC  and jx  be the variable indicating the 
number of occurrences of configuration jC  in a solu-
tion. 

For each 1{1, 2, , 3}t   
t

, we construct an integer-
linear program ILP  with arbitrary objective, and that 
the constraints are: 

 1
1

1
1

; 0,1,2, ,
K

ij j i
j

a x n i 


           (1) 

1

1

;
K

j
j

x m


                (2) 
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  1

1

0;  j j

L
x if p C t


            (3) 

10; 1,2, ,jx j   K           (4) 

Here, the constraints (1) and (2) guarantee that each-
element is exactly in one subset. The constraints (3) 
mean that we only use the configuration with length no 
more 1

1

L
t


. Obviously, 

1'
1

1

OPT min min{ | hasa feasible solution}t

L
t ILP


 , 

where '
1  denotes the optimal value of instance OPT '

1I . 
In tILP , the number of variables is at most  3

11 1K  
  

, 
and the number of constraints is at most 1 1 . 
Both are constants, as 1

 3
2 1 

  is a constant. By utilizing 
Lenstra’s algorithm in [15] whose running time is expo-
nential in the dimension of the program but polynomial 
in the logarithms of the coefficients, we can decide 
whether the integer linear programming tILP  has a fea-
sible solution in time , where the hidden constant 
depends exponentially on 1

( )O m
 . By solving at most 1K  

integer linear programs, we get an optimal solution for 
instance '

1I . Since computing 1  can be done in time 
 [14], and constructing the integer linear pro-

grams can be done in time , we arrive at the fol-
lowing lemma. 

L

( )
(O ml )ogm

O m

Lemma 2.An optimal solution for instance '
1I  of 

MIN-MAX3-PARTITIONING can be computed in time 
. ( )O mlogm

For an optimal solution for instance ' ' '
1 2( , , , )mS S S '

1I , 
replace each element ' 'j i  by element p S jp  in in-
stance 1I , and then we get a partition 1 2  
for instance 1

( , ,,S S )mS
I . This will not increase the objective. By 

Lemma 1, we have 

 

 

1 1
1

1 1
1

                        

3
max max

4
1 1

i
i i

p S OPT L

OPT OPT






 

 
    
 

, 

as 1 1

4

3
L OP T  and 1

4 4
 

  . Thus,   1 2( , , , )mS S S

is a  1  -approximation solution for instance 1I . 
Hence, we achieve the following theorem. 

Theorem 3. There exists a PTAS with running time 
 for MIN-MAX 3-PARTITIONING. (O mlogm)

2.2. Min-max Kernel 3-Partitioning 

For a given instance 2I  of MIN-MAX KERNEL 3- 
PAR-TITIONING, we first compute the value 2  of 
the feasible solution produced by the algorithm in [6].  

L

We have 2 2

3

2
OPT L OPT 

value of the optimal solution for instance 2I . 

Let 2

9
λ

2
 . For each element in 2I , we round it up 

to the next integer multiple of 2 /L 2 ㎏, i.e., 

 2'

2 2 2

1, 2, ,
/
j

j

r L
r j

L  
  m   

and         2'

2 2 2

1, 2, , 2
/

j
j

p L
p j

L  
   m . 

Then we get a new instance '
2I  with multi set . 'S

Similar to Lemma 1, we can obtain the following 
lemma. 

Lemma 4. The optimal value of instance '
2I  is no 

more than 2 2
2

3
OPT L


 . 

For convenience, let ' ' ' '
1 2{ , , , }mR r r r 

'R

. Note that the 

numbers of different elements in  and ''S R  are at 

most 2 1   in instance '
2I . Let (2)

in i 2, ,( 0,1 )   

and (2) ( 0iq i 2,1, , )   denote the number of elements  

in  and ''R 'S R  with size 2

2

L
i


, respectively. Clearly, 

1
(2)

0
i

i

n




m  and . Define a configuration  
1

(2)

0

2i
i

q




 m

jC  as a subset of elements, which contains exactly one 
element in  and two elements in 'S  and has 'R ' R

length no more than 2
2

3
1 L


 
 

 
. It is easy to see that the  

number of different configurations is at most  

 2

2 2 1K   

 

, which is a constant. Let  denote the  ija

number of elements in 'R  of size 2

2

L
i


 in configura-

t i o n   

jC  and denote the number of elements in ijb  ' 'S R  

2 , where  denotes the  2OPT

of size 2

2

L
i


 in configuration jC . Let jx  be the vari-  

indable icating the number of occurrences of configura-
tion jC  in a

For each 1{0,1, 2 3}t
 solutio . n

, ,   , we construct an integer 
linear program tILP  w itrary objective, and that ith arb

nts are: the constrai

 2
2

1
1

; 0,1,2, ,
K

ij j i
j

a x n i 


               (5) 

 2
2

1
1

; 0,1,2, ,
K

ij j i
j

b x q i 


              (6) 

2

1

;
K

j
j

x m


                   (7) 
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  1

1

0;  j j

L
x if p C t


             (8) 

20; 1,2, ,jx j  K             (9) 

As before, by implementing Lenstra’s algorithm in [15] 
at most 2K  times, we can find an optimal solution for 
instance '

2I . 
Lemma 5. An optimal solution to instance '

2I  of 
MINMAXKERNEL 3-PARTITIONING can be com-
puted in time . ( )O mlogm

For an optimal solution  for instance ' ' '
1 2( , , , )mS S S

'
2I  replace each element ' '

j ir S  and ' '
j i  by ele-

ment 
p S

jr  and jp  in instance 2I , respectively. And 
then we get a partition 1 2  for instance 2 , , , mS S S  I . 
This will not increase the objective. By Lemma 4, we 
have 

 

   

 

2 2
2 2

2 2

2

2

2 1
2

3 9
max 1

2

3
1 max max

9
1 1

2

i
i

i
i i

p S OPT L OPT

OPT p S OPT L

OPT OPT

 







 
    

 

   

 
    
 

2 , 

as 2 2

3

2
L OPT  and 2

9 9

2 2


 
  .  

Thus, 1 2  is a ( , , , )mS S S 1  -approximation solu-
tion for instance 2I . 

Hence, we achieve the following theorem. 
Theorem 6. There exists a PTAS with running time 

for MIN-MAX Kernel 3-PARTITIONING. (  O mlog m)

3. The Max-Min Objectives 

For a given instance 3I  MAX-MIN 3-PARTITION- 
ING, we first compute a partition with value 3  using L
MLPT  algorithm in [5]. Chen et al. [5] have proved that 

3 3 34
L OPT  , where denotes the value of 

the optimal solution fo

3
OPT 3OPT  

3r instance I  

Lemma 7. If there exists an ele enm t 

3 3

4

3jp L OPT  , 

then there exists an optimal partition in which element 

jp  and the two smallest elements are in the same subset. 
Proof. Without loss of generality, we may assume 

t h a t p p p p    .  I f  1 2 3 1 3m m 1 3

4
p L ,  L

3
e t  

be an optimal partiti nstance * * on for i*
1 2( , , , )mS S S  3I ,

3

 where 

1
*
1 1{ , ,iS p p

2
}ip . Note that 1 3p OPT , 

1 1i mp p  , and 
rchanging 3 1p  and 

ase the iv ction. 
, we get a new optimal partition in which 1p  and 

the two smallest elements are in the same subset. 
With the help of Lemma 7, while there exists 

2 3i mp p . Inte
1i

p  and m , 
2i

p

3mp , 
Thus

me

respectively, cannot decre object e fun

ele-an 
nt no less than 34 3L , we delete it and the two 

smallest elements fro and then handle a smaller in-
stance. Thus, we may assume without loss of generality 
that in the end each element is less than 

m S, 

34 3L . 
Lemma 8. In any feasible solution for instance 3I , 

the maximum load of the subsets is less than that 34L . 

Let 3

3


 . For each element , we ro  itjp S und  

 to down 3'

3 3 3/
j

j

p L
p

L  
 , and then we get a new nce insta

'
3I . 
Lemma 9. The optimal value of instance '

3I  is at  

least 3 3
3

3
OPT L . 


te that all the elements in No '

3I  are integer tiples mul

of 3L

3
. Thus, the number of different elements is at most  

3

4
λ

3
. Let (3)

3

4
0,1, , λ'

3I 1
  
 

 in instance 
3in i    de-

he number elements with size note t of 3

3

L
i


. Clearly, 

3
4
λ 1

3
(3)

0

3i
i

n m





 .

feasible solutio

 By mma 8, the maximum loa  any   Le d of

n for instance '
3I  is less than . De-34L

fine a configuration jC  as a bset of elemen hich 
contains exactly thre lements in 'S  and has length 
less than 34L . The number of differen  configurations is 

at most 

su ts w
e e

t

3
4
λK , which is a constant. Let a  denote 3 33



the number of elements of size 

ij

3

3

L
i


 in conf ation igur

jC  and jx  be the variable indic he number of ating t
occurrence of configuration s jC  in a solution. 

For each 3{0,1,2, , 4t }  e construct an, w  integer-
linear program tILP  with arb

e: 
itrary objective, and that 

the constraints ar

3K
 3

3
1

; 0,1, 2, , 4ij j i
j

a x n i 


        (10)    

3

1

;
K

j
j

x m


              (11)    

  1

1

0;   if  j j

L
x p C t


         12)      (

30; 1, 2, ,jx j K          (13)    

Copyright © 2013 SciRes.                                                                                   CN 



J. B. LI, H. L. DING 94 

Here, the constraints (10) and (11) gu
elem

arantee that each 
ent is exactly in one subset. The constraints (12) 

mean that we only use the configuration with length no 

Less than 3L
t

3
. Obviously, 

3'
3

3

OPT min{ | has a feasible solution}t

L
t ILP


 , 

where denotes the optimal value of instance '
3OPT  '

3I . 
 in As in Sectio , by implementing Lenstra’s algorithm

[15] at most 3

n 2
K  times, we get an optimal solution of 

instance '
3I . Since computing 3L  can be done in 

( )O mlogm  [5] and constructing the integer linear pro-
grams ca  done in ( )O m , we arrive at the following 
lemma. 

Lemma 10. An opti olution for instance '

n be

mal s 3I  of-
MIN-MAX 3-PARTITIONING can be computed in time

( )O mlogm . 
For an optimal solution 

 

 ' ' ', , ,S S S for instance 1 2 m
'
3I , replac each element e ' '

j ip S  by element jp  in 
tance 3ins I , and then we get a  1 2, , , mS S S  

for instance 3

partition 
I . This will not decrease the obj ive 

value. By Lemma 9, we have  

 

ect

 

3 3
3 3

3

3

3
1

1

i
OPT

OPT

 



 
  
 

 

, 

as  and 

3
min ip S OPT L 

3 3L OPT 3

3 3
 

  . Thus,  1 2, , , mS S S  

is a  1  -approxim ion for instanation solut ce 3I . 

He e achieve the following theorem. 
n  tim

nce, w
ing e 

om

4. Concl

 some PTASs for four optimiza

owledgements 

e National Natural Science 

nd T. Yadid, “Ap-
proximation S  on Parallel Ma-

Theorem 11. There exists a PTAS with run
( )mlogm  for MAX-MIN 3-PARTITIONINO G. 
Similarly, we can obtain the following theorem. We 

oof here. it the pr
Theorem 12. There exists a PTAS with running time 
( )O mlogm for MAX-MIN Kernel 3-PARTITIONING. 

usions 

We have presented tion-
versions of 3-partitioning problem. It is an interesting 
open question whether some similar PTAS can be de-
veloped for general objectives of 3-partitioning problem 
as in [1]. 
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