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ABSTRACT 

AI researchers typically formulated probabilistic planning under uncertainty problems using Markov Decision Proc-
esses (MDPs).Value Iteration is an inefficient algorithm for MDPs, because it puts the majority of its effort into backing 
up the entire state space, which turns out to be unnecessary in many cases. In order to overcome this problem, many 
approaches have been proposed. Among them, LAO*, LRTDP and HDP are state-of-the-art ones. All of these use 
reachability analysis and heuristics to avoid some unnecessary backups. However, none of these approaches fully ex-
ploit the graphical features of the MDPs or use these features to yield the best backup sequence of the state space. We 
introduce an improved algorithm named Topological Order Value Iteration (TOVI) that can circumvent the problem of 
unnecessary backups by detecting the structure of MDPs and backing up states based on topological sequences. The 
experimental results demonstrate the effectiveness and excellent performance of our algorithm. 
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1. Introduction 

In recent years, intelligent planning has developed into 
an important branch in artificial intelligence research, 
especially the uncertainty planning problem has aroused 
the researcher’s more attention. Among a large number 
of research methods, probabilistic methods can be more 
accurate to describe the uncertainty information, so it has 
been widespread concerned in the research, the solving 
method has been gradually matured. Probabilistic plan-
ning uses probability distribution to describe the uncer-
tainty of the initial world state and the effects of actions. 
In 2004, the IPC-4(2004 International Planning Competi-
tion) especially increased the competition in probabilistic 
planning domains; it has showed that the research of 
probabilistic planning is very important in the field of 
intelligent planning study. 

Markov decision processes (MDPs) is a model for 
representing probabilistic planning problems. Value it-
eration and policy iteration are two fundamental dynamic 
programming algorithms for solving MDPs [1]. However, 
these two algorithms are sometimes inefficient. They 
spend too much time backing up states, often redundantly. 
Recently several types of algorithms have been proposed 
to efficiently solve MDPs. The first type uses reachability 

information and heuristic functions to omit some unnec-
essary backups, such as RTDP [2], LAO* [3], LRTDP [4] 
and HDP [5]. The second uses some approximation me-
thods to simplify the problems. The third aggregates 
groups of states of an MDP by features, represents them 
as factored MDPs and solves the factored MDPs. Often 
the factored MDPs are exponentially simpler, but the 
strategies to solve them are tricky, sLAO* [6], sRTDP [7] 
are examples. One can use prioritization to decrease the 
number of inefficient backups. Faster dynamic program-
ming [8] and ranking policies in discrete Markov Deci-
sion Processes [9] are two recent examples. 

In this paper we propose an improvement of the value 
iteration algorithm named Topological Order Value It-
eration which combines the first and last technique. It 
decompose a MDP into strong topological order con-
nected components, and then using value iteration algo-
rithm to solve the components in order, so it can prevent 
the calculation of a large number of useless states and 
make the available states arranged orderly. It does back-
ups in the best order and only when necessary. Topo-
logical Order Value Iteration is itself not a heuristic algo-
rithm, but it can efficiently make use of extant heuristic 
functions to initialize value functions. 

2. Background 
*Project supported by Sanya City Centre to scientific and technological 
cooperation Foundation (Grant No 2011YD44). 2.1. Markov Decision Processes 
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AI researchers typically use MDPs to formulate prob-
abilistic planning problems. An MDP is defined as a 
four-tuple<S,A,T,C>, where S is a discrete set of states, 
A is a finite set of all applicable actions, T is the transi-
tion matrix describing the domain dynamics, and C de-
notes the cost of action transitions. The agent executes its 
actions in discrete time steps called stages. At each stage, 
the system is at one distinct states ∈S. The agent can 
pick any action a from a set of applicable action Ap(s) 
⊆A, incurring a cost of C(s, a). The action takes the sys-
tem to a new state s′ stochastically, with probability Ta 
(s′|s) . 

The horizon of an MDP is the number of stages for 
which costs are accumulated. There are a set of sink goal 
states G⊆S, reaching which terminates the execution. To 
solve the MDP we need to find an optimal policy (S→A), 
a probabilistic execution plan that reaches a goal state 
with the minimum expected cost. Any optimal policy 
must satisfy the following system of Bellman equations, 
the value function of a policy π is defined as: 

'
( ) ( , ( )) ( ' | ) ( '), [0,1]

s S
V s C s s T s s V s   
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and the optimal value function is defined as: 
*
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( ) min [ ( , ) ( ' | ) ( ')], [0,1]a A s s S

V s C s a T s s V s 
    

(2) 

2.2. Dynamic Programming 

Most optimal MDP algorithms are based on dynamic 
programming. Its usefulness was first proved by a simple 
yet powerful algorithm named value iteration [10].Value 
iteration first initializes the value function arbitrarily. Its 
basic idea is to iteratively update the value functions of 
every state until they converge. And in each iterm, the 
value function is updated according to Equation 2. We 
call one such update a Bellman backup. The Bellman 
residual of a state s is defined to be the difference be-
tween the value functions of s in two consecutive itera-
tions. The Bellman error is defined to be the maximum 
Bellman residual of the state space. When this Bellman 
error is less than some threshold value, we conclude that 
the value functions have converged sufficiently.  

The main drawback of the value functions algorithm is 
that, and in each iterm, the value functions of every state 
are updated, which is highly unnecessary. Firstly, some 
states are backed up before their successor states, and 
often this type of backup is fruitless. Secondly, different 
states converge with different rates. When only a few 
states are not converged, we may only need to back up a 
subset of the state space in the next iteration. 

3. Topological Order Value Iteration 

We have studied the sequence of state backups according 

to an MDP’s graphical structure, which is the intrinsic 
property of an MDP and potentially decides the com-
plexity of solving it [11]. Our first observation is that 
states and their value functions are causally related. If in 
an MDP M, one state s′ is a successor state of s after ap-
plying action a, then V (s) is dependent on V (s′). For this 
reason, we want to back up s′ ahead of s. The causal rela-
tion is transitive.  

Topological Order Value Iteration solves an MDP 
problem by using the problem’s graphical structure 
wisely. Given an MDP, TOVI first builds a directed rea-
chability graph Gsr, where G has one vertex per state s 
∈ S. A directed edge from vertex s1 to s2 exists if there 
is an action such that Ta (s2|s1) > 0. TOVI then finds all 
the strongly connected components of Gsr, and the topo-
logical order of the components. Then, it solves every 
connected component individually, by value iteration, 
according to their topological order. Figure 1 shows the 
graphical representation of one simple MDP that has 7 
states and 12 actions. In the figure, successors of prob-
abilistic actions are connected by an arc. For simplicity 
reason, transition probabilities Ta and costs C(s, a) are 
omitted. Using TOVI, we can divide the MDP into two 
connected components C1 and C2. Based on the remain-
ing actions, C1 and C2 can be subdivided into three and 
two smaller components respectively. By decomposing 
an MDP into smaller components, TOVI’s convergence 
can be much faster than VI. 

We use Kosaraju’s algorithm of detecting the topo-
logical order of strongly connected components in a di-
rected graph [12]. Note that Bonet and Geffner used Tar-
jan’s algorithm in detection of strongly connected com-
ponents in a directed graph in their solver [5], but they do 
not use the topological order of these components to sys-
tematically back up each component of an MDP. Kosa-
raju’s algorithm is simple to implement and its time 
complexity is only linear in the number of states, so 
when the state space is large, the overhead in ordering 
the state backup sequence is acceptable. Our experimen-
tal results also demonstrate that the overhead is well 
compensated by the computational gain. 
 

 

Figure 1. A simplified MDP and its set of strongly connected 
components. 
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The pseudo code of TOVI is shown in Algorithm 1. 
We first use Kosaraju’s algorithm to find the set of 
strongly connected components C in graph Gsr, and their 
sequential order. Note that each c ∈ C maps to a set of 
states in M. We then use value iteration to solve each c. 
Since there are no cycles in those components, we only 
need to solve them once. 

Algorithm 1 Topological Order Value Iteration 

1: Input:an MDP <S,A,T,C> 
VI(S: a set of states, δ) 

2: while (true) 
3: for each state s ∈ S 
4:  

( ) '
( ) min [ ( , ) ( '| ) ( ')]a Ap s s S

V s C s a T s s V s 
  

5: if (Bellman error is less than δ) 
6: return 

Scc(MDP M)(Kosaraju’s algorithm) 
7: build the graph Gsr 
8: compute the strongly connected components of 

Gsr,order them by   topological order C1,...,Ck 
9: for c←1 to k do 
10: solve component Cc by value iteration 
Search(s) 
11: if sG then mark s as visited 
12:  arg min ( , )aa Q s a

13: for every unvisited successor s′of action a do 
14: Search(s′) 
15: Back-up(s) 
16: for each action a do 
17: 

'
Q( , ) ( , ) ( '| ) ( ')ls S

s a C a s T s s V s


    

18: if Q(s,a)>Vu(s) then  eliminate a from Ap(s) 
19:  

( )( ) min ( , )l a Ap sV s Q s a

20:  
( ) ' '

( ) min [ ( , ) ( ' | ) ( ')]u a Ap s a us S
V s C s a T s s V s 

 

4. Experiment 

We tested the Topological Order Value Iteration and 
compared its running time against value iteration (VI), 
LAO*, and LRTDP. All the algorithms are coded in C 
and properly optimized, and run on the same Intel Core2 
Duo CPU E7400 2.80GHz processor with 4G main 
memory. The operating system is Linux version 2.6.15 
and the compiler is gcc version 3.3.4. 

We use seven MDP test domains for our experiments. 
They are Mountain Car, Single Arm Pendulum, Wet- 
floor2, and three domains from International Planning 
Competition 2006–Drive, Elevators and TireWorld. The 
Performance of the different algorithms in various test 
domains is listed in Table 1. All running times are in 
seconds, fastest times are bolded. BC size means the size 
of the biggest connected component. “-” means that the 
algorithm failed to solve the problem within 5 minutes. 

The experimental results has showed TOVI algorithm  

Table 1. Running time of different algorithms in various 
domains. 

TOVI Test 
Domain

VI 
Time

LAO* 

Time 
LRTDP 

Time BC size Time 

MCar100

MCar300

MCar700

1.91 

229.70

- 

1.23 

93.91 

216.01 

2.81 

117.23 

- 

7,799 

71,751

390,191

0.68 

23.22 

233.98

SAP100

SAP300

SAP500

9.39 

- 

- 

1.81 

32.4 

130.7 

2.58 

- 

- 

9,999 

89,999

- 

2.37 

44.2 

- 

WF200

WF400

- 

- 

11.22 

98.97 

22.08 

97.73 

39,999

159,999

10.58 

90.78 

DAP10

DAP20

51.45

- 

3.04 

144.12 

1.02 

32.68 

9,454 

150,489

0.75 

21.95 

Drive - - - 75,840 74.70 

Ele(p13)

Ele(p15)

- 

- 

227.53 

27.53 

- 

- 

1053 

1053 

58.46 

14.59 

TireW(5)

TireW(6)

0.14 

0.16 

0.01 

0.01 

1.26 

1.44 

23 

618,448

2.26 

48.81 

 
is better than the other three algorithms on  most of do-
mains, it can fast convergence due to only update the 
appropriate path to calculate the sequence to avoid a 
large number of useless state calculations. However, in 
Single Arm Pedulum and TireWorld test domains, TOVI 
algorithm grouped the state diagram and ordered each 
connected component has speeded more time in the 
overall running time, so its performance less than the 
LAO * algorithm and LRTDP. 

5. Conclusions 

We have introduced and analyzed a probabilistic plan-
ning MDP solver, Topological Order Value Iteration that 
studies the dependence relation of the value functions of 
the state space and use the dependence relation to decide 
the sequence to back up states. The algorithm is based on 
the idea that different MDPs have different graphical 
structures, and the graphical structure of an MDP intrin-
sically determines the complexity of solving that MDP. 
We notice that no current solvers detect this information 
and use it to guide state backups. Thus, they solve MDPs 
of the same problem sizes but with different graphical 
structure with almost the same strategies. In this sense, 
they are not “intelligent”. Topological Order Value Itera-
tion is proposed to solve this problem. It is guaranteed to 
find the optimal solution of a Markov decision process 
sequentially. 

Topological Order Value Iteration also is a flexible 
algorithm, which can use the initial state information and 
apply reachability analysis. Our results have shown that 
TOVI is extremely useful in MDPs with many connected 
components. The complexity increase of TOVI is not as 
great as other algorithms as the number of layers increase, 
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which shows that TOVI is very suitable for solving 
MDPs with layered structures. 
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